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Supplementary	figures	

	

Supplementary	Figure	1	|	The	Potts	model	accurately	reproduces	higher	order	statistics	of	the	
HIV	sequence	distribution,	which	are	not	directly	constrained	by	the	inverse	Potts	inference	
procedure.	The	probability	of	observing	a	sequence	with	a	certain	number	of	mutant	amino	
acids	relative	to	the	consensus	sequence	is	not	directly	constrained	by	the	inverse	Potts	
inference	problem.	However,	inferred	Potts	models	accurately	reproduce	this	probability	
distribution,	demonstrating	that	they	effectively	capture	important	constraints	on	HIV	
sequences	beyond	pairwise	mutational	probabilities.	
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Supplementary	Figure	2	|	Different	sequence	backgrounds	lead	to	different	patterns	of	escape	
in	the	Gag	TW10	epitope.	Strong	interactions	between	the	Gag	TW10	epitope	escape	mutations	
242N	(a)	and	248T	(b)	and	specific	residues	in	the	sequence	background	in	patient	CAP239	lower	
the	fitness	cost	of	these	two	mutations.	All	strong	interactions	(|J|>0.1,	see	equation	(1)	in	the	
main	text)	between	these	escape	mutations	and	the	p24	protein	sequence	background	are	
shown,	with	the	width	of	the	link	proportional	to	the	magnitude	of	the	coupling.	223V	and	219Q	
are	known	compensatory	mutations.	Similarly,	146P	has	been	positively	associated	with	
variation	in	the	TW10	epitope1,	and	256V	is	known	to	strongly	suppress	TW10	variation2.	In	
patient	CAP239,	escape	occurs	through	mutations	242N	and	248T.	Compensatory	residues	in	
the	sequence	background	in	patient	CH198	lower	the	fitness	cost	of	the	242N	escape	mutation	
(c),	but	other	escape	mutations	such	as	248T	are	suppressed	(d).	In	patient	CH198,	escape	
occurs	only	through	the	242N	mutation. 
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Supplementary	Figure	3	|	Exploring	the	potential	contributions	of	multiple	escape	
pathways.	(a)	Difference	in	energy	(gap)	between	the	predicted	fittest	and	second	
fittest	potential	escape	mutants	for	each	epitope.	When	the	gap	is	large,	this	indicates	
that	alternative	escape	mutations	may	come	at	a	much	larger	fitness	cost	to	the	virus,	
compared	to	the	easiest	escape	path.	In	contrast,	a	low	value	for	the	gap	indicates	that	
multiple	alternative	escape	routes	with	similar	fitness	costs	exist.	Typically,	multiple	
potential	escape	mutations	are	available	that	have	comparable	fitness	costs,	but	in	
some	cases	the	fitness	cost	of	escape	increases	sharply	for	suboptimal	escape	paths.	(b)	
Logarithm	of	the	entropy	of	the	sequence	distribution	(see	equation	(1)	in	the	main	text)	
restricted	to	the	set	of	escape	mutant	sequences	for	each	epitope	only,	which	can	be	
interpreted	as	an	effective	number	of	likely	escape	paths.	
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Supplementary	Figure	4	|	Empirical	correlation	between	viral	replicative	capacity	and	
energy.	Using	experimental	measurements	of	viral	replicative	capacity3	taken	from	a	
study	unrelated	to	this	work,	along	with	corresponding	energy	measurements	for	these	
viral	sequences,	we	can	derive	an	empirical	relationship	for	variation	in	viral	fitness	as	a	
function	of	energy.	
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Supplementary	Figure	5	|	Correlation	between	escape	time	and	fitness-based	
measures	can	improve	when	epitopes	where	escape	is	observed	at	the	time	the	T	cell	
response	was	first	detected	are	included.	(a-d)	analogous	to	Fig.	2	in	the	main	text,	
including	epitopes	where	≥50%	of	the	virus	population	consists	of	escape	mutants	at	the	
time	the	T	cell	response	was	first	detected.	Total	of	n=71	epitopes,	including	3	epitopes	
where	escape	occurs	through	putative	antigen	processing	(AgP)	mutation	outside	the	
epitope,	and	10	epitopes	where	no	escape	is	observed.	Vertical	immunodominance	
measurements	are	available	for	a	subset	(n=53)	of	these	epitopes.	Error	bars	show	
first/third	quartiles	for	time	to	escape	in	the	Wright-Fisher	simulations,	computed	from	
the	statistics	of	103	simulation	runs.	
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Supplementary	Figure	6	|	Fitness-based	methods	accurately	predict	the	residues	at	
which	escape	mutations	occur.	In	the	great	majority	of	epitopes,	the	most	common	
residue	where	escape	mutations	are	observed	in	patients	during	the	entire	time	course	
of	evolution	corresponds	to	one	of	the	two	top	residues	where	escape	mutations	are	
predicted	to	incur	the	lowest	fitness	costs	(41/51=80%	of	epitopes	where	escape	is	
observed)	or	where	mutations	are	most	frequently	observed	in	simulated	evolution	
(43/51=84%).	Less	frequently,	the	residue	where	escape	mutations	are	observed	most	
often	has	one	of	the	top	two	highest	Shannon	entropies	(34/51=67%).	Epitopes	where	
escape	was	observed	at	the	time	the	T	cell	response	was	detected	are	excluded	(n=6),	as	
is	one	epitope	without	detailed	escape	sequence	data.	
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Supplementary	Figure	7	|	Predicting	the	residues	of	escape	mutations	in	individual	
epitopes.	Here	we	show	the	single	site	entropy,	fitness	cost	of	mutation,	and	frequency	
of	escape	mutations	in	simulated	evolution	at	each	residue	for	all	epitopes	where	
nonsynonymous	mutations	were	observed	in	the	epitope	(n=51).	Each	epitope	is	
represented	by	a	row	of	residues,	with	the	residue	where	escape	mutations	were	most	
frequently	observed	in	the	clinical	data	denoted	by	a	circle.	Predictions	for	the	same	
epitope	based	on	epitope	entropy,	fitness	cost,	and	simulated	evolution	are	placed	side	
by	side	in	each	row.	Darker	colors	indicate	residues	where	escape	mutations	are	
predicted	to	be	more	likely.	Predictions	are	correct	when	the	circle	in	each	row	is	more	
darkly	shaded	than	the	boxes	in	the	same	row.	Epitopes	where	escape	was	observed	at	
the	time	the	T	cell	response	was	detected	are	excluded	(n=6),	as	is	one	epitope	without	
detailed	escape	sequence	data.	
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Supplementary	tables	

Supplementary	Table	1	|	Sequence	data	used	to	train	the	Potts	model	

Protein	 Number	of	
sequences	(clade	B)	

Number	of	
individuals	(clade	B)	

Number	of	
sequences	(clade	C)	

Number	of	
individuals	(clade	C)	

p17	 8787	 4695	 6076	 2374	
p24	 8921	 4882	 9105	 2364	
p7	 7801	 3838	 8361	 2013	
p6	 8189	 4064	 5561	 2346	
pro	 14786	 10263	 5387	 4315	
RT	 2260	 1434	 1526	 894	
int	 4889	 2785	 1993	 1118	
vif	 6450	 1851	 3483	 544	
vpr	 5670	 1603	 3524	 597	
tat	 3315	 875	 2478	 485	
rev	 3340	 904	 2561	 550	
vpu	 4865	 1494	 3208	 713	

gp41	 17366	 2063	 11903	 1397	
nef	 8734	 2586	 4098	 1197	

Our	analysis	employs	HIV	sequence	data	broadly	sampled	from	thousands	of	individuals	
infected	by	both	clade	B	and	clade	C	viruses,	far	beyond	the	cohort	of	17	individuals	
considered	here,	in	order	to	obtain	a	more	accurate	estimate	of	the	distribution	of	HIV	
sequences	at	the	population	level.	Here	we	report	the	total	number	of	sequences	(and	
the	number	of	unique	individuals	from	which	they	were	obtained)	used	to	train	the	
Potts	models	for	each	protein/clade.	All	sequences	were	downloaded	from	the	Los	
Alamos	National	Laboratory	HIV	sequence	database	(www.hiv.lanl.gov).	In	order	to	
reduce	the	influence	of	selection	for	drug	resistance,	only	sequences	from	drug-naïve	
individuals	were	used	for	protease	and	reverse	transcriptase.	
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Supplementary	Table	2	|	Rank	correlations	between	predictors	and	escape	time	for	
the	set	of	epitopes	with	known	immunodominance		

	 Predictor	 Spearman	correlation	 P	value	
Including	escapes	at	the	 S	 -0.22	 0.12	
time	the	T	cell	response	 ΔE	 0.38	 5.3×10-3	
was	first	detected	 tWF	 0.53	 4.2×10-5	
(n=53	epitopes)	 tWF

%M	 0.73	 4.4×10-10	
	 %M	 -0.53	 4.0×10-5	
	 	 	 	
Excluding	escapes	at	the	 S	 -0.20	 0.16	
time	the	T	cell	response	 ΔE	 0.37	 9.9×10-3	
was	first	detected	 tWF	 0.41	 3.6×10-3	
(n=49)	 tWF

%M	 0.66	 2.1×10-7	
	 %M	 -0.60	 4.3×10-6	
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Supplementary	Table	3	|	Patient-stratified	Cox	proportional	hazards	models	

	 Predictors	 Coefficient	 P	value	 Pseudo-R2	
Univariate	models	 log10(S)	 1.52	 0.09	 0.06	
(n=53	epitopes,	maximum	 ΔE	 -0.22	 0.04	 0.08	
possible	pseudo-R2=0.72)	 tWF	 -0.13	 2.4×10-3	 0.31	
	 tWF

%M	 -0.16	 1.0×10-3	 0.40	
	 log10(%M)	 1.69	 9.3×10-3	 0.14	
	 	 	 	 	
Multivariate	models		
(n=53,	maximum	possible	

log10(S)	+	
log10(%M)	
	

2.26	
1.97	

0.05	
7.1×10-3	

0.22	
	

pseudo-R2=0.72)	 ΔE	+	
log10(%M)	
	

-0.34	
2.02	

0.02	

2.8×10-3	
0.25	
	

	 tWF	+	
log10(%M)	
	

-0.16	
2.25	

4.9×10-3	

7.1×10-3	
0.44	
	

	 tWF
%M	+	

log10(%M)	
-0.14	
0.85	

2.1×10-3	

0.30	
0.41	
	

	 	 	 	 	
Univariate	models,	excluding	 log10(S)	 1.46	 0.11	 0.05	
escapes	at	the	time	the	T	cell	 ΔE	 -0.18	 0.10	 0.06	
response	was	first	detected	 tWF	 -0.11	 0.02	 0.17	
(n=49,	maximum	possible	 tWF

%M	 -0.15	 4.3×10-3	 0.28	
pseudo-R2=0.69)	 log10(%M)	 2.03	 8.0×10-3	 0.18	
	 	 	 	 	
Multivariate	models,	excluding		
escapes	at	the	time	the	T	cell	

log10(S)	+	
log10(%M)	
	

2.14	
2.28	

0.08	
8.2×10-3	

0.24	
	

response	was	first	detected	
(n=49,	maximum	possible	

ΔE	+	
log10(%M)	
	

-0.31	
2.32	

0.04	

3.1×10-3	
0.26	
	

pseudo-R2=0.69)	 tWF	+	
log10(%M)	
	

-0.14	
2.23	

0.02	

7.7×10-3	
0.33	
	

	 tWF
%M	+	

log10(%M)	
-0.12	
1.07	

0.02	
0.22	

0.30	

Analogous	to	Table	2,	but	with	random,	patient-specific	baseline	escape	rates	included	
in	the	CPH	model.	Contributions	of	vertical	immunodominance	(%M)	and	purely	fitness-
related	measures	(S,	ΔE,	tWF)	again	are	mostly	independent.	Note	that	here	the	
maximum	possible	pseudo-R2	is	substantially	lower	than	in	Table	2.	
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Supplementary	Table	4	|	Criteria	for	selection	of	8-11mer	candidate	epitopes	from	
reactive	18mers	that	previously	could	not	be	reliably	identified	

Patient	 HLA	type	 18-mer	 Epitopes	 Selection	criteria	
CAP45	 A*23:01,04;	

A*29:02,03;	B*15:10;	
B*45:01;	Cw*16:01;	
Cw*16:02	
	

PGPGVRYPLTFGWCFKLV RYPLTFGW 
RYPLTFGWCF 

Known	A*23:01	
Known	A*23:01	

CH40	 A*02:01;	A*31:01;	
B*40:01;	B*44:02;	
Cw*03:02;	Cw*05:01	

KELYPLASLRSLFGNDPS KELYPLASL Known	A*02:01,	B*40	

CH77	 A*02:05;	A*02:05;	
B*53:01;	B*57:01-04;	
Cw*04:01;	Cw*18:01	

LGLNKIVRMYSPTSILDI RMYSPTSIL Known	A*02	

CH77	 A*02:05;	A*02:05;	
B*53:01;	B*57:01-04;	
Cw*04:01;	Cw*18:01	

FDSRLAFQHVAREIHPEF VAREIHPEF 

 

IC50=649nM	(<716nM,	
B*57:01-specific	
cutoff)	

CH77	 A*02:05;	A*02:05;	
B*53:01;	B*57:01-04;	
Cw*04:01;	Cw*18:01	

GKKQYKLKHIVWASRELE 
+ HIVWASRELERFAVNPSL 
+ LERFAVNPSLLETSEGCR 

ASRELERF 

 

IC50=580nM	(<716nM,	
B*57:01-specific	
cutoff)	

CH164	 A*02:01;	A*29:01-04;	
B*44:03;	B*45:01;	
Cw*07:01;	Cw*16:01	

KEGHIARNCKAPRKKGCW KEGHIARNCKA 

 

IC50=428nM	(B*45:01)	

CH256	 A*33:01;	A*68:01;	
B*14:01;	B*53:01;	
Cw*04:01;	Cw*08:02	

GQMVHQPLSPRTLNAWVK MVHQPLSPR 
QPLSPRTLNAW 
QMVHQPLSPR 

 

IC50=19nM	(A*68:01)	
IC50=42nM	(B*53:01)	
IC50=298nM	(A*33:01)	

We	attempted	to	infer	likely	8-11mer	epitopes	for	sets	of	reactive	18mers	where	the	
true	epitopes	had	not	previously	been	discerned	experimentally	(see	Supplementary	
Ref.	4).	The	candidate	epitopes	identified	above	were	selected	based	on	the	match	to	
known	epitopes	in	the	LANL	CTL	database	and	to	predicted	epitope-HLA	binding	
affinities.	For	details,	see	Methods.	
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Supplementary	Table	5	|	Correlation	between	true	escape	times	and	predictors	when	
epitopes	with	escape	mutations	present	at	the	time	T	cell	responses	were	first	
detected	are	excluded,	or	with	escape	mutations	reverted	

	 Predictors	 Pearson	correlation	 P	value	
Exclude	epitopes	with	escape	mutations		 S	 -0.15	 0.26	
at	initial	time	(n=59)	 ΔE	 0.30	 0.02	
	 tWF	 0.34	 9.3×10-3	

Exclude	epitopes	with	escape	mutations		 S	 -0.08	 0.59	
at	initial	time,	include		 ΔE	 0.21	 0.17	
immunodominance	(n=43)	 tWF	+	

immunodominance	
0.50	 6.6×10-4	

Revert	escape	mutations	to	T/F,	 S	 -0.14	 0.33	
include	immunodominance	(n=53)	 ΔE	 0.37	 6.4×10-3	
	 tWF	+	

immunodominance	
0.47	 3.4×10-4	

Escape	occurs	more	rapidly	when	escape	mutations	are	present	in	the	virus	population	
at	the	time	that	T	cell	responses	are	first	detected.	This	is	because	the	fitness	cost	of	
escape	appears	to	be	particularly	low	for	these	epitopes	(Methods).	Nonetheless,	the	
correlation	between	fitness	cost/time	to	escape	in	simulated	evolution	and	the	true	
escape	time	remains	robust	even	if	these	epitopes	are	omitted.	
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