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Abstract

Motivation: Graphical models are often employed to interpret patterns of correlations observed in

data through a network of interactions between the variables. Recently, Ising/Potts models, also

known as Markov random fields, have been productively applied to diverse problems in biology,

including the prediction of structural contacts from protein sequence data and the description of

neural activity patterns. However, inference of such models is a challenging computational prob-

lem that cannot be solved exactly. Here, we describe the adaptive cluster expansion (ACE) method

to quickly and accurately infer Ising or Potts models based on correlation data. ACE avoids overfit-

ting by constructing a sparse network of interactions sufficient to reproduce the observed correl-

ation data within the statistical error expected due to finite sampling. When convergence of the

ACE algorithm is slow, we combine it with a Boltzmann Machine Learning algorithm (BML). We

illustrate this method on a variety of biological and artificial datasets and compare it to state-of-the-

art approximate methods such as Gaussian and pseudo-likelihood inference.

Results: We show that ACE accurately reproduces the true parameters of the underlying model

when they are known, and yields accurate statistical descriptions of both biological and artificial

data. Models inferred by ACE more accurately describe the statistics of the data, including both the

constrained low-order correlations and unconstrained higher-order correlations, compared to

those obtained by faster Gaussian and pseudo-likelihood methods. These alternative approaches

can recover the structure of the interaction network but typically not the correct strength of inter-

actions, resulting in less accurate generative models.

Availability and implementation: The ACE source code, user manual and tutorials with the ex-

ample data and filtered correlations described herein are freely available on GitHub at https://

github.com/johnbarton/ACE.
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1 Introduction

Interpreting patterns of correlations in data is a fundamental prob-

lem across scientific disciplines. A common approach to this prob-

lem is to infer a simple graphical model that explains the statistics

of the data through a network of effective interactions between

the variables, which may then be used to generate new predictions

(Friedman, 2004). The goal of this approach is to disentangle the

direct interactions between variables from their correlations,

which arise through a combination of direct and indirect effects.

Here, we focus on a particular family of undirected graphical

models, referred to as Potts models in the language of statistical

physics, which have recently been applied to study a wide variety

of biological systems. Applications include inference of the effect-

ive connectivity of populations of neurons, and their patterns of

firing activity, based on data from multi-electrode

recordings (Barton and Cocco, 2013; Cocco et al., 2009; Roudi

et al., 2009; Schneidman et al., 2006), and the prediction of pro-

tein contact residues (Morcos et al., 2011) and the fitness effects

of mutations (Ferguson et al., 2013; Figliuzzi et al., 2016; Mann

et al., 2014) based on the analysis of multiple sequence alignments

(MSAs).

Unfortunately, the inference of Potts models from data is chal-

lenging. The computational time required for naive Potts inference

algorithms scales exponentially with the system size, rendering the

problem intractable for realistic systems of interest. Various ap-

proximations have been employed to combat this problem, includ-

ing Gaussian and mean-field inference (Kappen and Rodr�ıguez,

1998), perturbative expansions (Nguyen and Berg, 2012; Sessak and

Monasson, 2009) and pseudo-likelihood methods (Aurell and

Ekeberg, 2012; Ravikumar et al., 2010). These approximate meth-

ods can successfully capture the general structure of the network of

interactions, recovering, in particular, contact residues in the three-

dimensional structure of protein families (Cocco et al., 2013;

Ekeberg et al., 2014; Feinauer et al., 2014; Hopf et al., 2012; Marks

et al., 2011; Morcos et al., 2011; Sułkowska et al., 2012), but the re-

sulting models typically give a less accurate statistical description of

the data (Barton et al., 2014). Alternately, algorithms based on itera-

tive rounds of Monte Carlo simulation (Ackley et al., 1985; Mann

et al., 2014; Sutto et al., 2015) are capable of inferring models that

accurately reproduce the observed correlations, but they are typic-

ally slow to converge.

Here, we describe an extension of the adaptive cluster expansion

(ACE) method, originally devised for binary (Ising) variables (Cocco

and Monasson, 2011, 2012), to more general (Potts) variables tak-

ing multiple categorical values. We also describe new computational

methods for faster inference, including a Monte Carlo learning pro-

cedure and the optional incorporation of prior knowledge about the

structure of the interaction graph. The algorithm has been success-

fully applied to real data with as many as several hundred variables,

including studies of neural activity in the retina and prefrontal cor-

tex (Barton and Cocco, 2013; Cocco and Monasson, 2011, 2012;

Tavoni et al., 2015), human immunodeficiency virus (HIV) fitness

based on protein MSA data (Barton et al., 2015; Mann et al., 2014),

and lattice protein models (Jacquin et al., 2016). Below we illustrate

the application of this method to both real and artificial datasets.

We show that models inferred by ACE give an excellent reconstruc-

tion of the statistics of the data. They also accurately recover, con-

sidering sampling limitations, true underlying model parameters

when they are known, and can achieve comparable performance to

state-of-the-art methods for predicting structural contacts in protein

family data. We compare these results to those obtained using other

approximate inference methods, focusing in particular on pseudo-

likelihood methods.

1.1 Background
The Potts model emerges naturally in the statistical description of

complex systems. Consider a system of N variables described by the

configuration x ¼ fx1;x2; . . . ; xNg, with xi 2 f1; 2; . . . ; qig. The

number of discrete categories qi that each variable xi can take on,

which we refer to as states, may depend on the variable index i. For

proteins the states correspond to particular amino acids, while for

neurons they represent the binary (firing or silent) state of activity.

Given a set of measurements of the system, the empirical average

over the sampled configurations gives us the
P

i qi individual andP
i< j qiqj pairwise frequencies for the different states of each vari-

able in the data. We denote the individual and pairwise frequencies

by piðaÞ and pijða;bÞ, respectively, where i, j are the index of the

variables and a, b are the index of the states. As an example, x could

represent sequences in a MSA, with piðaÞ the frequency of the amino

acid labeled by a in column i of the alignment, and pijða;bÞ the fre-

quency of the pair of amino acids a, b in columns i, j.

The simplest, or maximum entropy (Jaynes, 1982), probabilistic

model capable of reproducing the observed frequencies is an expo-

nential distribution, which assigns a probability to every configur-

ation of the system x:

PðxÞ ¼ exp �EðxÞð Þ
Z

;

EðxÞ ¼ �
XN
i¼1

hiðxiÞ �
XN�1

i¼1

XN
j¼iþ1

Jijðxi; xjÞ;

Z ¼
X

x

exp �EðxÞð Þ :

(1)

Here, the partition function Z is a normalizing factor which ensures

that all probabilities sum to one. In the simple case that all the variables

xi are binary, this model is referred to as an Ising model. More gener-

ally, when xi can take multiple discrete states, this model is referred to

as a Potts model. The parameters hiðaÞ and Jijða; bÞ in the energy func-

tion E, called fields and couplings, must be chosen such that variable

averages (correlations) in the model match those in the data, i.e.

piðaÞ ¼
X

x

dðxi; aÞPðxÞ;

pijðaÞ ¼
X

x

dðxi; aÞdðxj; bÞPðxÞ;
(2)

where d is the Kronecker delta function. The problem of finding the

parameters hiðaÞ; Jijða; bÞ that satisfy Equation (2) is referred to as

the inverse Potts problem. Note that the probability of any configur-

ation remains unchanged under the transformation of the couplings

and fields given by Jijða; bÞ ! Jijða; bÞ þKijðaÞ þ KjiðbÞ; hiðaÞ ! hiðaÞ
�
P

j 6¼i KijðaÞ for any K. In addition, all the hiðaÞ at a site i can be uni-

formly shifted by a constant with no effect on the probability. This

‘gauge invariance’ reduces the number of free parameters in the Potts

model to qi � 1 fields for each site and ðqi � 1Þðqj � 1Þ couplings for

each pair of sites.

Formally, the inverse Potts problem is solved by the set of fields

and couplings that maximize the average log-posterior probability

of the data or equivalently, those that minimize the cross-entropy

between the data and the model

S � � 1

B
logLðJjpÞ ¼ SPottsðJjpÞ �

1

B
log P0ðJÞ ; (3)
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where B is the number of data points in the sample (e.g. the number

of sequences in a MSA), and

SPottsðJjpÞ ¼ log Z�
XN
i¼1

Xqi

a¼1

hiðaÞpiðaÞ

�
XN�1

i¼1

XN
j¼iþ1

Xqi

a¼1

Xqj

b¼1

Jijða;bÞpijða; bÞ ;
(4)

and P0 is a prior distribution for the parameters. Here, for simplicity

we have written the set of all individual and pairwise variable fre-

quencies as p and the set of all fields and couplings as J. Note that,

ignoring the contribution of the prior distribution, the cross-entropy

S is equivalent to the entropy of the inferred model satisfying

Equation (2). S has a simple interpretation in information theory as

it can be written as the sum of the entropy of the data and the

Kullback–Leibler divergence of the model with respect to the data

(Shannon, 1948), see also the related field of information geometry

(Amari, 1987).

The inclusion of a prior distribution helps to avoid overfitting,

while also improving convergence. A Gaussian prior distribution for

the parameters is a typical choice, which contributes a term

c0
XN
i¼1

Xqi

a¼1

hiðaÞ2 þ c
XN�1

i¼1

XN
j¼iþ1

Xqi

a¼1

Xqj

b¼1

Jijða;bÞ2 (5)

to Equation (3). For c � 1=B this factor can be thought of as a

weakly informative prior (Gelman et al., 2008) whose main

purpose is to ensure that solutions of the inverse problem are not

infinite due to issues of undersampling (e.g. parameters corres-

ponding to an amino acid that is never observed). Note that this

form of the regularization is not invariant under gauge transform-

ations. Thus, the results of the inference including the regulariza-

tion do have some dependence on the gauge choice. Other forms

of regularization are also possible (see Supplementary Materials).

Note that the presence of the partition function Z in Equation (4)

precludes direct numerical maximization of the posterior when

the system size is large, since this requires summing over allQN
i¼1 qi configurations of the system. Alternate methods of solving

the inverse Potts problem involve approximation schemes or rely

on computationally costly Monte Carlo simulations, as described

above.

2 Methods

2.1 Adaptive cluster expansion
The adaptive cluster expansion (Cocco and Monasson, 2011, 2012)

is based on the formal decomposition of the regularized cross-

entropy Equation (3) into a sum of contributions from subsets (clus-

ters) of variables C ¼ fi1; . . . ; ikg; k � N,

S ¼
X

C

DSC ; DSC ¼ SC �
X
C0�C

DSC0 ; (6)

where the sum is over all nonempty subsets of the N variables. The

terms DSC, referred to as cluster entropies, have been recursively

defined as the remaining contribution to the subset posterior once

all contributions from smaller clusters have been substracted. Here,

SC denotes the maximum of Equation (3) restricted only to the vari-

ables in C. Thus, SC depends only on the frequencies piðaÞ; pijða;bÞ
with i; j 2 C. Provided that the number of variables in C is small

(typically �20), numerical maximization of the posterior restricted

to C is tractable. Note that, due to the recursive definition of DSC,

the sum over all 2N � 1 nonempty and overlapping subsets of the N

variables in Equation (6) gives the exact posterior S by construction:

X
C

DSC ¼ DSCtot
þ
X

C0�Ctot

DSC0 ¼ SCtot
¼ S : (7)

Here, Ctot ¼ f1;2; . . . ;Ng is the set of all variables in the system.

The expansion of Equation (6) can be computationally expedient be-

cause, practically, it can converge toward S even when only contri-

butions from clusters much smaller than the system size N are

considered (see below).

The cluster entropy contributions are easy to interpret for one-

and two-site clusters: neglecting the regularization term the single

variable cluster contributions are the entropies of the variables taken

as if they were independent, DSi � Si ¼ �
Pqi

a¼1 pilog piðaÞ. The two

variable entropy is Sij ¼ �
Pqi

a¼1

Pqj

b¼1 pijða; bÞlog pijða; bÞ (see

Supplementary Materials for more details). The cluster entropy for a

pair of variables is then DSij ¼ Sij � Si � Sj, which is equivalent to

the mutual information. It is zero when pijða; bÞ ¼ piðaÞ pjðbÞ, i.e.

when the two variables are independent. More generally, DSC is a

measure of the interdependence between the variables in the cluster

which cannot be accounted for by smaller clusters.

The main idea of this approach is to approximate the cross-

entropy (and simultaneously, the parameters that maximize it) by

limiting the sum in Equation (6) to a restricted set of clusters C that

give the most important contributions to it. As shown in (Cocco and

Monasson, 2011, 2012), contributions for overlapping clusters shar-

ing the same interaction subgraph partially compensate, and thus

summing clusters according to the magnitude of their entropy con-

tribution allows for a faster convergence of Equation (6). Neglecting

clusters with small contributions to the cross-entropy also helps to

avoid overfitting. As a simple example, for a unidimensional inter-

action graph in which each variable is only connected to its two

nearest neighbors, the expansion can be exactly truncated by sum-

ming only clusters of size one and the largest contributing 2-site

clusters containing neighboring variables (Cocco and Monasson,

2012; Gori and Trombettoni, 2011; Mastromatteo, 2013).

We define a threshold t on the cross-entropy to separate the sig-

nificant clusters from those which can be neglected. Starting from a

large value of the threshold (typically t¼1), such that only a few

clusters are selected, the algorithm proceeds through two nested iter-

ations. The outer loop is on the value of the threshold t, which is

progressively lowered until enough clusters are included to yield a

model consistent with the data. The inner loop constructs the set of

clusters C with contributions to the cross-entropy jDSCj > t and

yields an approximation of the cross-entropy and the model param-

eters at the threshold t. The algorithm stops at the first value of the

threshold t where the inferred model fits the sampled averages and

correlations Equation (2) to within the statistical error due to finite

sampling (see Section 3.2).

The algorithm for the inner loop, including the selection

and summation of individual clusters, is as follows. Given a list Lk

of clusters of size k, beginning with the list of all clusters of size

k¼2:

1. For each cluster C 2 Lk,

2. Compute SC by numerical minimization of Equation (3) re-

stricted to C.

3. Record the parameters minimizing Equation (3), called JC.

4. Compute DSC using Equation (6).

5. Add all clusters C 2 Lk with jDSCj > t to a new list L0kðtÞ.
6. Construct a list Lkþ1 of clusters of size kþ1 from overlapping

clusters in L0kðtÞ.
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The rule for constructing new clusters of size kþ1 from selected

clusters of size k can be lax (such that a new cluster C is added pro-

vided that any pair of size k subclusters, C1;C2 2 L0kðtÞ and

C1 [ C2 ¼ C) or strict (such that a new cluster is only added if all of

its kþ1 subclusters of size k belong to L0kðtÞ). The above process is

then repeated until no new clusters can be constructed.

After the summation of clusters terminates, the approximate

value of the parameters minimizing the cross-entropy, given the cur-

rent value of the threshold, is computed by

JðtÞ ¼
X

k

X
C2L0

k
ðtÞ

DJC; DJC ¼ JC �
X
C0�C

DJC0 : (8)

Note that this formula generally yields sparse solutions because

nonzero couplings are only included in Equation (8) if some clusters

containing them have been selected. In this algorithm the dominant

contribution to the computational complexity often comes from the

evaluation of the partition function Z for large cluster sizes, which

requires O
Y
i2C

qi

 !
operations to compute.

2.2 Compression of the number of Potts states
As mentioned in Section 1.1, the number of states each variable may

take on need not be the same for all variables in a system. States

with zero (or otherwise very small) probabilities may be observed

very infrequently in real, finitely-sampled data, and the relative error

on the corresponding correlations due to finite sampling is large.

To limit overfitting and reduce the computational time, the low

probability states can be effectively grouped together according to a

given compression parameter. Here, we present two heuristic con-

ventions for compressed representations of the data. First, for each

variable we can treat explicitly the states observed with probability

larger than a cutoff value piðaÞ > po while grouping all infrequently

observed values into the same state. A natural value for the cutoff is

po � 1=
ffiffiffiffi
B
p

, such that pair correlations between independent states

with frequencies of po are at the threshold of detection.

Alternatively, we can order the states by their contribution to the

total single site entropy Sq and choose a reduced model in which

only the first k states are modeled explicitly, with k chosen to cap-

ture a certain fraction f of the site entropy. This is achieved by expli-

citly considering the first k states and grouping the remaining q – k

states together, choosing k such that

Sk ¼ �
Xk

a¼1

pðaÞlog pðaÞ � 1�
Xk

a¼1

pðaÞ
 !

log 1�
Xk

a¼1

pðaÞ
 !

� fSq :

(9)

The frequency of the regrouped Potts state is then the sum of the

frequencies of the states which have been regrouped:

piðkþ 1Þ ¼
Pq

a¼kþ1 piðaÞ. Once the reduced model is inferred, one

can recover a complete model by modifying the field parameter for

the regrouped states, hiða0Þ ¼ hiðkþ 1Þ þ log piða0Þ=piðkþ 1Þð Þ,
while keeping the couplings to the value of the regrouped state

Jijða0; bÞ ¼ Jijðkþ 1; bÞ. For states with zero probabilities in the data,

we fix the fields from the regularization alone.

2.3 Expansion around a reference structure
ACE is a two-fold algorithm: it builds up the interaction graph while

also inferring the parameters that reproduce the correlated structure

of the data. This expansion can be accelerated if information about

the interaction graph is available. It is also possible to expand the

cross-entropy around its Gaussian approximation.

• If the list of directly interacting variables is known, one can run

the expansion starting from clusters built on the support of the

interaction graph. For proteins this procedure can be applied

using the real contact map, known from structural informa-

tion, as the initial list of 2-site clusters. Alternatively, if the

contact map is not known, one can use fast inference

approaches such as DCA or plmDCA (Ekeberg et al., 2014;

Morcos et al., 2011) to obtain a list of initial putative contacts

and then refine the expansion from this initial list

(Supplementary Materials).
• As shown in (Cocco and Monasson, 2012) for the Ising model,

one can analytically calculate the posterior and the parameters

that maximize it under the Gaussian approximation with an ad

hoc L2-norm regularization (where the regularization strength

depends on the variable frequencies). It is then possible to per-

form the cluster expansion around this Gaussian reference

model, i.e. the expansion of S� S0, where S0 is the cross-entropy

for a Gaussian model

S0 ¼
1

2
log det M; Mij ¼

pij � pipjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pið1� piÞpjð1� pjÞ

p ; (10)

in the Ising (binary) case. If S0 is a reasonable approximation

of S, then the expansion of S� S0 may converge more rapidly

than the expansion of S alone. See Cocco and Monasson

(2012) for further details on the expansion of the Gaussian

model.

2.4 Refinement with Boltzmann Machine

Learning (BML)
In cases where convergence of the cluster algorithm alone is not suf-

ficiently fast, it is often more expedient to use the output set of fields

and couplings as starting values for a Boltzmann Machine Learning

(BML) routine. In typical cases, provided that the inferred model is

not too sparse, this procedure can lead to rapid convergence of the

model even when the starting error is large.

Here, we adapted the RPROP algorithm for neural network

learning (Riedmiller and Braun, 1993) to the case of Potts models.

Given an input set of fields and couplings, we first compute the

model correlations pMC
i ðaÞ;pMC

ij ða; bÞ through Monte Carlo simula-

tion. The couplings and fields are then updated according to the gra-

dient of the posterior, multiplied by a parameter-specific weight

factor

hiðaÞ ! hiðaÞ � pMC
i ðaÞ � piðaÞ

� �
wiðaÞ ;

Jijða;bÞ! Jijða; bÞ � pMC
ij ða; bÞ � pijða; bÞ

� �
wijða; bÞ :

(11)

Regularization can also be incorporated by adding 2cJijða;bÞ, or

the analogous term for fields, to the gradient. Here, the weights wi

ðaÞ and wijða; bÞ are also updated with each iteration of the algo-

rithm. At each iteration, if the sign of pMC
i ðaÞ � piðaÞ

� �
is the same

as in the previous round, wiðaÞ ! sþwiðaÞ, else wiðaÞ ! s�wiðaÞ,
and similarly for the wijða; bÞ. This acceleration of weight param-

eters allows appropriate step sizes to be chosen adaptively for each

coupling and field. To prevent steps sizes from becoming too large

or too small, the weight parameters are restricted to lie between

some wmin and wmax. Typical choices of the weight bounds and up-

date multipliers are wmin ¼ 10�3; wmax ¼ 10; sþ ¼ 1:9; s� ¼ 0:5.

Note that we choose sþ < 1=s� so that, if the sign of one of the

terms of the gradient continually switches, the corresponding

weight decreases.
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As with other BML approaches, this procedure is computation-

ally limited by the need to thermalize the system to accurately esti-

mate the model correlations through MC. Each MC step requires a

computation of the change in energy due to a change in the configur-

ation x, requiring OðnÞ operations, where n is the typical ‘neighbor-

hood’ size (i.e. number of sites to which another site couples with

nonzero Jijða;bÞ). Future refinements could improve the speed of

this routine by implementing, for example, adaptive selection of the

number of thermalization steps and more efficient Monte Carlo

sampling techniques.

3 Results

3.1 Description of test data and their preprocessing
Here, we apply ACE to five different datasets and test the recon-

struction of their statistics. First, we generate artificial data from a

Potts model with random fields and couplings, allowing us to test

the ability of the algorithm to recover the true model parameters.

Second, we infer a Potts model from artificial sequences generated

by a 3� 3� 3 lattice protein model with large folding probabilities

in a given structure. This folding probability (Shakhnovich and

Gutin, 1990) contains all-order interactions between amino acids,

unlike the Potts model used for the inference, thus serving as an

interesting benchmark test (Jacquin et al., 2016). Third, we study

trypsin inhibitor protein sequences (Cocco et al., 2013; Ekeberg

et al., 2013, 2014; Morcos et al., 2011) to compare structural pre-

dictions obtained by ACE to ones obtained using Gaussian (DCA)

and pseudo-likelihood (plmDCA) methods. We then test the ability

of the algorithm to infer a model describing the HIV nucleocapsid

protein p7. Finally, we study multi-electrode recordings of neural ac-

tivity in the prefrontal cortex of a rat (Peyrache et al., 2009) ana-

lyzed in Tavoni et al. (2015) to study memory replay.

3.1.1 Potts models on Erd}os-Rényi random graphs (ER05)

We consider an example of a Potts model with q¼21 states, where

the network of interactions is described by an Erd}os-Rényi random

graph with N¼50 variables. Each edge in the interaction graph is

included with probability 0.05. Field and coupling values for inter-

acting pairs of sites are selected from a Gaussian distribution

(Supplementary Materials). We compute the correlations through

Monte Carlo sampling of B ¼ 104 configurations. In the results

shown below we compressed rarely-observed Potts states with piðaÞ
< po ¼ 0:05 and used c ¼ 1=B ¼ 10�4, performing the inference in

the gauge of the compressed Potts state.

3.1.2 Lattice protein model (LP SB)

We consider an alignment of 5� 104 protein sequences with N¼27

sites, arranged in a 3� 3� 3 cube, selected according to their

exactly computable (Shakhnovich and Gutin, 1990) folding prob-

ability SB (see (Jacquin et al., 2016), Supplementary Materials). In

the results below we have removed amino acids that are never

observed (i.e. compression with po¼0), and used the regularization

c ¼ 5=B ¼ 10�4. Couplings and fields corresponding to the least fre-

quently observed amino acid at each site are gauged to zero.

3.1.3 Trypsin inhibitor protein family (PF00014)

We study an alignment of 4915 sequences downloaded from the

PFAM database for the trypsin inhibitor protein family

(PF00014, PFAM 28.0 release, May 2015). After removing columns

with > 50% gaps the number of sites is N¼53. We reweight the con-

tribution of each sequence to the correlations according to its

similarity to other sequences in the alignment, an approach commonly

used to attenuate phylogenetic correlations (Morcos et al., 2011).

Here, we show results in the consensus gauge after compressing

rarely-observed amino acids with piðaÞ < po ¼ 0:05, using

c ¼ 2=B ¼ 10�3. Additionally, we note that gaps in the MSA are not

generally modeled well in the Potts model representation with pair-

wise interactions, as they tend to be present in long stretches, espe-

cially at the beginning and the end of the alignment (Feinauer et al.,

2014). Such stretches of highly correlated gaps slow down the infer-

ence procedure because they give rise to large clusters. Here, we have

processed the data to replace gaps by random amino acids with the

same frequency as observed in the non-gapped sequences. Though

this approach obscures the important variability in the sequence

lengths in the MSA, it is a simple way to reduce computational prob-

lems induced by correlated gaps, valuable for structural prediction.

3.1.4 HIV p7 nucleocapsid protein

The HIV nucleocapsid protein p7 plays an essential role in multiple

aspects of viral replication (Freed, 2015). We downloaded a MSA of

4131 p7 sequences from individuals infected by clade B viruses from

the Los Alamos National Laboratory HIV sequence database (www.

hiv.lanl.gov, accessed October 6, 2014). After removing columns

with > 95% gaps, the remaining number of sites is N¼71. Here,

we do not reweight sequences by similarity, given that they are all in

the same phylogenetic cluster, and the regular observation of similar

sequences in the HIV population may be indicative of higher fitness

(Ferguson et al., 2013; Shekhar et al., 2013). We replaced gaps as

described above, compressed rarely-observed amino acids with

fS ¼ 90%, and chose c ’ 1=2B ¼ 1:4� 10�4. Inference is performed

in the consensus gauge.

3.1.5 Multi-electrode recordings of cortical neurons

We divided a 20 minute recording of the firing activity of 32 cortical

neurons into a set of B ¼ 1:5� 105 time bins of 10ms, treating each

time window as an observation of the system. During each time win-

dow, the variable for each neuron i was assigned xi¼1 if the neuron

was active at least once during that time, and zero otherwise. Here,

we take c ¼ 1=B ¼ 6:6� 10�6.

3.2 Convergence of the cluster expansion algorithm
As mentioned in Section 2.1, for each threshold t used to select clus-

ters in the ACE expansion, the model individual hxiðaÞi and pairwise

hxijða; bÞi frequencies are compared to the data’s frequencies piðaÞ
and pijða; bÞ. We define a relative error as the ratio between the devi-

ations of the predicted observables from the data, dhxii ¼ hxii � pi

and dhxiji ¼ hxiji � pij, and the expected statistical fluctuations due

to finite sampling, dpiðaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
piðaÞð1� piðaÞÞ=B

p
; dpijða;bÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pijða; bÞð1� pijða; bÞÞ=B

p
: We define the normalized maximum

error as

�max ¼ max fi;j;a;bg
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2log ðMÞ
p jdhxiðaÞij

dpiðaÞ
;
jdhxijða; bÞij

dpijðabÞ

� �
(12)

where M is the total number of one- and two-point correlations.

Figure 1 shows the behavior of �max and the cross-entropy as a

function of the threshold for the five datasets described above. The

cross-entropy S approaches a constant value as the threshold is

decreased. In all cases except for the lattice protein model, the algo-

rithm converges at �max � 1, when the correlations are reproduced

to within the expected error due to finite sampling. The expansion

slows dramatically for the lattice protein model at a fairly high value

of the threshold due to the large number of states included at each
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site in the model (typically q¼19). The computational cost of calcu-

lating the partition function is a limiting factor as the maximum

cluster size increases, corresponding to Kmax ¼ 7 at the stopping

point in Figure 1. At this point BML is needed to refine the param-

eters inferred through the cluster expansion. Note that, even in cases

when the error appears large, convergence of the BML procedure is

often rapid because only small changes to the parameters may be ne-

cessary to obtain a model that accurately reproduces the

correlations.

Convergence of the algorithm can also be more difficult for

alignments of long proteins or those with very strong interactions.

In such cases one may observe large oscillations in the cross-entropy

as a function of the threshold, and large ( � 10 sites) clusters may

appear even at high thresholds. Strong regularization (c > 1=B) can

help to dampen these oscillations, after which it can be returned to

	1=B during the BML procedure.

3.3 Parameters of the ER05 model are recovered by

ACE
In Figure 2 we show that the 2� 104 underlying parameters for the

ER05 model corresponding to the explicitly modeled Potts states are

accurately recovered by ACE. These states are better sampled and

therefore they have smaller statistical uncertainties. In the model

inferred by plmDCA, which includes no reduction in the number of

states, there are around 106 parameters. Those corresponding to the

explicitly modeled states are recovered fairly well (with some errors

in the fields), but parameters corresponding to compressed states are

difficult to infer due to insufficient sampling (see Supplementary

Materials for details and analysis of errors in inferred parameters

due to finite sampling).

3.4 Statistics of the data are accurately reproduced
Figures 3 and 4 show how the model inferred by ACE reproduces

the statistics of the input data. In all cases the model accurately

captures the input probabilities and pairwise connected correl-

ations within the expected error due to finite sampling, as

anticipated.

We also find that higher order correlations in the data can be

accurately reproduced. Figure 4 shows the 3-point connected cor-

relations and the distribution P(k) of Hamming distances k be-

tween the sampled configurations and the configuration in which

each site takes on the most probable value (i.e. the consensus se-

quence for proteins). In the neural case the most probable config-

uration is the silent one and therefore P(k) is the probability to

have k active neurons in the same time window. Models inferred

by ACE outperform those from plmDCA (Ekeberg et al., 2014),

see Figure 3 and Supplementary Materials for higher order

statistics.

(a)

(b)

(c)

(d)

(e)

Fig. 4. Fit for models describing (a) ER005, (b) LP SB, (c) PF00014, (d) HIV p7

and (e) cortical activity. ACE recovers the connected pair correlations cij ða;bÞ
¼ pij ða;bÞ � pi ðaÞpj ðbÞ (left). The inferred model also successfully captures

higher order correlations present in the data, such as the connected three-

body correlations (center) and the probability P(k) of observing a configur-

ation with k differences from the consensus configuration (right)

(a) (b)

(c)

(e)

(d)

Fig. 1. Convergence of the cluster expansion as a function of the threshold t

for (a) ER005, (b) LP SB, (c) PF00014, (d) HIV p7 and (e) cortical data. As the

threshold is lowered, the cross-entropy S approaches a constant value. In all

cases except for LP SB the normalized maximum error �max reaches 1 through

the cluster expansion alone. For LP SB a Monte Carlo learning procedure is

used to refine the inferred parameters and reach �max ’ 1

Fig. 2. ACE accurately recovers the true fields h (left) and couplings J (right)

corresponding to Potts states with pi ðaÞ � 0:05 for the ER05 model. Error bars

denote standard deviation in estimated parameters due to finite sampling

(a) (b) (c)

(d) (e)

Fig. 3. ACE outperforms plmDCA in recovering the single variable frequencies

for models describing (a) ER005, (b) LP SB, (c) PF00014, (d) HIV p7 and (e) cor-

tical activity. The results for plmDCA are obtained with the regularization

c ¼ 0:01, which gives better results for the correlations than lower values of

the regularization strength (see Supplementary Materials)
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Comparing the distribution of energies E for configurations

sampled from the inferred model to the distribution obtained from

the original data provides an additional check of statistical consist-

ency. The energy of a configuration is proportional to the logarithm

of its probability (in addition, because the entropy S is obtained

from the cluster expansion, we can also compute the constant of

proportionality). Concordance between the inferred and empirical

energy distributions thus indicates that the real data could plausibly

be generated from the inferred model. Figure 5 compares the data

and model distributions of energies, showing that in most cases they

closely overlap. A small discrepancy is introduced in PF00014 be-

cause of the reweighting procedure (here, the histogram of the data

is normalized by the sequence weights). The energy distribution for

the lattice protein model is broader than for the data, though the

peak is fit correctly. In contrast with models inferred using ACE, the

distribution of energies of the data is less well reproduced with

plmDCA (Supplementary Materials). The ability to estimate the

probability of a configuration can be useful when comparing the

likelihood of a configuration in two different models, for example to

decide which family a given protein belongs to.

3.5 ACE accurately infers structural contacts

for PF00014
In Figure 6, we use the inferred couplings to predict pairs of residues

that are in contact in the folded protein structure for PF00014, and

we compare results from ACE to the standard contact prediction

methods DCA (Morcos et al., 2011) and plmDCA (Ekeberg et al.,

2014). In this case the pairs of sites for which the Frobenius norm of

the couplings is largest, including the average product correction

(APC, see (Dunn et al., 2008)), are predicted to be most likely to be

in contact. We define contact residues to be those that are within 6Å

of each other in the folded structure of the protein, and we exclude

trivial contact pairs along the protein backbone (i� j � 4).

The accuracy of contact predictions with ACE can be increased

by decreasing the compression (po¼0) and using a large regulariza-

tion (c¼1), in the same spirit as the strong regularization employed

in typical DCA and plmDCA approaches. Here, we gauged the par-

ameters for the least frequently observed amino acids to zero and

computed the Frobenius norm of the couplings in the zero sum

gauge (as is typical in DCA). The couplings are then strongly

damped by regularization and the cluster expansion converges for

maximal cluster sizes much smaller than those needed in the case

with weaker regularization. Figure 6b shows that the precision in

this case is competitive with the one obtained from plmDCA, and

the prediction of the first �30 contacts is slightly better for ACE.

However, in this case we note that because of the small values of the

couplings the generative properties of the inferred model are lost

(see Supplementary Materials for the statistical fit of the model).

4 Discussion

Potts models have been successfully applied to study a variety of bio-

logical systems. However, the computational difficulty of the inverse

Potts problem, i.e. the inference of a Potts model from correlation

data, has presented a barrier to their use. Here, we presented ACE, a

flexible, easy-to-use method for solving the inverse Potts problem,

which can be applied to analyze a wide variety of real and synthetic

data. We also provide tools for automatically generating correlation

data from multiple sequence alignments (MSA), making the analysis

of this type of data even more accessible.

Here, we have adapted the complexity of the inferred Potts mod-

els to the level of the sampling in the data. This is achieved by re-

grouping less frequently observed Potts states into a unique state

(according to a threshold on entropy or frequency), then by a sparse

inference procedure that omits interactions that are unnecessary for

reproducing the statistics of the data to within the error bounds due

to finite sampling. On artificial data we verified that compression of

the number of Potts states allows for a faster and more precise infer-

ence of the uncompressed model parameters while reducing overfit-

ting. The methods of compression that we describe here can also be

applied to other inference methods (including, for example, the

DCA and plmDCA approaches discussed above), a topic of future

study. In addition, as described above ACE yields sparser models

when sampling is poor, leading to more robust inference.

This method allows for the simple construction of models from

various types of data, which can then be used to predict the evolution

of experimental systems and their response to perturbations. Previous

work has demonstrated promising applications of such models in a

variety of different biological contexts. In neuroscience, the analysis of

multi-electrode recordings has led to models that identify cell assem-

blies, which are thought of as basic units of neural computation and

memory (Hebb, 1949; Peyrache et al., 2009; Tavoni et al., 2015).

(a) (b)

Fig. 6. (a) Contact map for PF00014 inferred by ACE. Here, we show the top

100 predicted contacts, with true predictions in orange and false predictions

in blue. Other contact residues in the crystal structure are shown in gray. For

true positives and other contact residues, close contacts (<6Å) are darkly

shaded and further contacts (<8Å) are lightly shaded. The upper and lower

triangular parts of the contact map give predictions for the inferred model

with strong regularization/no compression (c¼1) and weak regularization/

high compression (c ¼ 2=B), respectively. (b) Precision (number of true pre-

dictions divided by the total number of predictions) as a function of the num-

ber of contact predictions for close contact residues that are widely separated

on the protein backbone (i � j > 4). Results using ACE compare favorably

with those from DCA (Morcos et al., 2011) and are competitive with those

from plmDCA (Ekeberg et al., 2014) (Color version of this figure is available at

Bioinformatics online.)

(a) (b) (c)

(d) (e)

Fig. 5. Histograms of the data (MSA) and model (MC) energy distributions for

(a) ER005, (b) LP SB, (c) PF00014, (d) HIV p7 and (e) cortical activity. Monte

Carlo sampling of the inferred Potts model describing each set of data yields

a distribution of energies similar to the empirical distribution, a further check

on the consistency of the model fit beyond the fitting of correlations (Color

version of this figure is available at Bioinformatics online.)
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Studies of MSAs of protein families allows for the prediction of pairs

of residues in contact in the folded protein structure, giving insights

on the protein structure from sequence information alone. Classical

protein folding algorithms can be then used to refine the structure

from contact predictions (Hopf et al., 2012; Marks et al., 2011;

Sułkowska et al., 2012). Potts models have also been used to describe

the mutational landscape of viral and bacterial proteins, where they

provide information about the effects of mutations on protein func-

tion, which could potentially be exploited to improve vaccine design

and drug treatment (Barton et al., 2015; Ferguson et al., 2013;

Figliuzzi et al., 2016; Mann et al., 2014).

In the present work, we have compared ACE with standard max-

imum entropy inference methods based on Gaussian and pseudo-

likelihood approximations. These methods are particularly fast and

adapted to find structural contacts and use, respectively, large pseu-

docounts and regularizations. Inference with ACE is generally

slower than mean-field and pseudo-likelihood approaches.

However, it allows for the accurate inference of underlying model

parameters (when they are known), and for the construction of good

generative models of the data when using a Bayesian value of the

regularization strength (c 	 1=B). In analogy with DCA and

plmDCA, when using ACE with little compression (e.g. po¼0) and

strong regularization the contact prediction obtained using trad-

itional contact estimators is improved while the generative power of

the inferred model is degraded. A recent work has also shown that a

BML algorithm can be used to give a good generative model predict-

ing the structure and functional dynamics of proteins (Sutto et al.,

2015). Running such algorithms from a good initial guess of param-

eters, such as those obtained by ACE as shown here, could help to

accelerate the inference procedure.

An additional advantage of ACE is that it evaluates the entropy

of the Potts model corresponding to a given set of data. For protein

sequence data, this entropy gives a measure of the variability of the

sequences in the same protein family, and can be used to predict

site-dependent variability and robustness with respect to mutations

(Barton et al., 2016). We have now successfully applied the method

to protein sequences of a few hundred amino acids in length col-

lected from phylogenetically distant organisms, or longer sequences

(up to 500 amino acids) for more phylogenetically related and less

variable HIV proteins.
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