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Abstract. We describe the selective cluster expansion (SCE) of the entropy,
a method for inferring an Ising model which describes the correlated activity
of populations of neurons. We re-analyze data obtained from multielectrode
recordings performed in vitro on the retina and in vivo on the prefrontal cortex.
Recorded population sizes N range from N = 37 to 117 neurons. We compare
the SCE method with the simplest mean field methods (corresponding to a
Gaussian model) and with regularizations which favor sparse networks (L; norm)
or penalize large couplings (Lo norm). The network of the strongest interactions
inferred via mean field methods generally agree with those obtained from SCE.
Reconstruction of the sampled moments of the distributions, corresponding to
neuron spiking frequencies and pairwise correlations, and the prediction of higher
moments including three-cell correlations and multi-neuron firing frequencies,
is more difficult than determining the large-scale structure of the interaction
network, and, apart from a cortical recording in which the measured correlation
indices are small, these goals are achieved with the SCE but not with mean field
approaches. We also find differences in the inferred structure of retinal and cortical
networks: inferred interactions tend to be more irregular and sparse for cortical
data than for retinal data. This result may reflect the structure of the recording.
As a consequence, the SCE is more effective for retinal data when expanding the
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entropy with respect to a mean field reference S — Sy, while expansions of the

entropy S alone perform better for cortical data.
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1. Introduction

Recent years have seen the advance of in vivo [1] and in vitro [2] recording of populations
of neurons. The quantitative analysis of these data presents a formidable computational
challenge.

Bialek and co-workers [3] and Chichilnisky [4] and co-workers have introduced the idea
of using the Ising model to describe patterns of correlated neural activity. The Ising model
is the maximum entropy model, i.e. the least constrained model [5], capable of reproducing
observed spiking frequencies and pairwise correlations in the neural population. This
model has proved to be a good model for the activity, in the sense that, even though one
only constrains the model using the first and second moments, one can predict features
of the activity such as third moments and multi-neuron firing patterns.

The inverse Ising approach, consisting of the inference of an effective Ising model from
experimental data, goes beyond the cross-correlation analysis of multielectrode recordings
by disentangling the network of direct interactions from correlations. The inverse Ising
approach can then be used to extract structural information on effective connections,
such as how they change with the distance, time scale, and different types of cell. One
can also explore how effective connections change during activity due to adaptation, short
term memory, and long term learning.

Another key feature of the inverse Ising approach is the ability to take into account
that measured correlations are affected by finite sampling noise. Experiments are limited
in time and their ability to thoroughly sample the experimental system; therefore, it is
important to avoid overfitting of data. Overfitting can have drastic effects on the structure
of the inferred interaction network. One way to avoid overfitting is to regularize the
inference problem by introducing a priori information about the model parameters in the
log-likelihood of the Ising model giving the data.

However, inferring an Ising model from a set of experimental data is a challenging
computational problem with no straightforward solution. Typical methods of solving
the inference problem include the Boltzmann learning method, which involves iterative
Monte Carlo simulations followed by small updates to the interaction parameters [6].
This method can be very slow for large systems, though recent advances have notably
improved the speed, and this method has proved to be effective in the analysis of neural
data [7]-[9]. Other methods such as iterative scaling algorithms [10, 11], pseudo-likelihood
approximation [12, 13], various perturbative expansions [14]-[17] and mean field (or
Gaussian model) approximations [18] have also been developed which attempt to solve the
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Inverse Ising problem in certain limits. Such approximations are often computationally
simple, but suffer from a limited range of validity. One method that has recently proven to
effectively infer the parameters of spin glass models is the method of minimum probability
flow [19].

Here we review a statistical mechanical approach [20, 21] based on a selective cluster
expansion which improves upon mean field methods. Moreover, it avoids overfitting by
selecting only clusters with significant contributions to the inverse problem, minimizing
the impact of finite sampling noise. We compare this approach with the mean field or
Gaussian approximation and we test different forms of regularization, in particular the
norm [ regularization, which preferentially penalizes small but nonzero couplings, and
norm Lo regularization, which penalizes large couplings in absolute value more heavily.

Our aim is to compare the methods using the structure and sparsity of the inferred
interaction network, and the ability of the inferred Ising model to reproduce the multi-
neuron recorded activity. These two features correspond respectively to the capacity to
give structural information about the system which has generated the data and the ability
of the Ising model to encode neural activity.

The outline of this paper is as follows. In the remainder of the introduction we give
a description of the neural data, then detail two methods for analyzing the data: cross-
correlation histogram analysis, which focuses on correlations between pairs of cells, and
the inverse Ising approach, which attempts to infer an effective network of interactions
characterizing the whole system. In section 2 we give an overview of the effects of finite
sampling noise in the data on the Ising model inference problem. This includes, in
particular, quantifying the expected fluctuations of the empirical correlations and the
inferred Ising model couplings and fields, as well as introducing methods of regularizing
the inference procedure to minimize problems due to finite sampling. Section 3 gives a
discussion of the difficulties of the inverse Ising problem. In sections 4 and 5, we describe
two methods for solving the inverse problem: the mean field or Gaussian approximation,
and the selective cluster expansion (SCE). Here we discuss regularization conventions for
both the mean field and SCE, as well as practical computational methods and questions
of convergence for the SCE.

Beginning with section 6, we focus on applications to real data. In this section we assess
the performance of the SCE algorithm on retinal and cortical data. We then describe
the properties of the inferred Ising models following the analysis performed previously
in [15] on retinal data, showing that the inferred models reconstruct the empirical spiking
frequencies and pairwise correlations, and evaluating their ability to predict higher order
correlations and multi-neuron firing frequencies. Structural properties of the interaction
networks in retinal and cortical data, including maps of inferred couplings and the
reliability of the inferred positive and negative couplings, are also discussed. We illustrate
the importance of network effects by comparing the couplings obtained through SCE with
the those obtained from the correlation indices, which only depend on properties of pairs
of cells rather than on the entire system. We also compare couplings inferred with SCE
on a subset of each experimental system with those for the full system. In section 7 we
explore the performance of the mean field approximation using a variety of regularization
methods and strengths. Couplings inferred via the mean field approximation and those
obtained from SCE are also compared. Finally, in section 8 we discuss the limitations of
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Figure 1. Raster plot of spike train data from recordings of neuron populations:
in the retina in dark conditions (N = 60 cells) and with a random flickering
stimulus (N = 51 cells), data by Meister [22]; in the retina with a natural movie
stimulus (N = 40 cells), data by Berry [3]; in the prefrontal cortex of a rat
(N = 32 cells), data by Peyrache and Battaglia [33]; in the medial prefrontal
cortex of a rat (N = 117 cells), data by Buzsdki and Fujisawa [30]. Recordings
last for 30 min—1 h; here we plot only 1 s of the recording. One can translate
the continuous time data in the raster plot into binary patterns of activity by
arranging the time interval into bins of size At and recording whether or not each
neuron spikes within each time bin. The probability p; that a neuron ¢ spikes in
a time window of size At is the number of windows in which the neuron i is
active divided by the total number of time windows. The probability p;; that two
neurons %, j are active in the same time window is given by the number of time
windows in which both the neurons are active divided by the total number of
time windows.

the algorithm and some possible extensions of the static inverse Ising approach in treating
neural data.

1.1. Description of neural data

We begin by briefly describing the in vitro and in vivo multielectrode recordings (see
figure 1) of neural activity used in our analysis.

The first set of recordings is done in vitro on the retina [3, 22, 23|. Here, the retina is
extracted from the eye of an animal—typically a salamander, guinea pig, or primate—and
placed on a multielectrode array with all five layers of cells (photoreceptors, horizontal,
bipolar, amacrine, and ganglion cells) responsible for detecting and preprocessing visual
signals. This allows for the simultaneous recording of tens to hundreds of cells in the last
layer consisting of ganglion cells while the retina is subjected to various visual stimuli.

The neural network of the retina is relatively simple: it has a feed-forward architecture
and preprocesses visual information, which is then transmitted through the optical nerve
to the visual cortex [4, 24]. The retina thus presents an ideal environment for studying how
a stimulus is encoded in the ganglion cell activity and how information is processed [25].

The first experiments on the retina [26] defined the concept of receptive fields, which
are regions in the visual plane to which a ganglion cell is sensitive. Light which is applied
to the receptive field of a ganglion cell stimulates a response from the cell. Early studies
also identified different ganglion cell types [25], denoted as ON and OFF. ON cells respond
when light is switched on in the center of the cell’s receptive field, while OFF cells respond
when light in the receptive field is switched off.
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In the experimental work of Arnett [27] and Mastronarde [28], the correlated activity
of ganglion cells has been studied via the simultaneous recording of pairs of ganglion cells.
Neighboring cells tend to spike in synchrony if they are of the same type and tend to be
de-synchronized if they are of different types. Cross-correlation histograms, which describe
the correlated firing of pairs of neurons [25], have been particularly useful for identifying
circuits of connections between ganglion cells in the retina and for determining the distance
dependence of functional connections between ganglions [2, 4, 29].

The second set of recordings is done in vivo on rats. These recordings are obtained
by implanting tetrodes or silicon probes which simultaneously record neural activity on
several layers of the prefrontal cortex [1]. Probes can be implanted for several weeks in
a rat, allowing for the study of mechanisms of memory formation. Rats are trained in a
working memory task and recordings are typically performed before, during, and after the
learning of the task [30, 31].

In the work of Peyrache, Battaglia and collaborators, recordings are performed on
the medial prefrontal cortex (prelimbic and infralimbic area) with six tetrodes, each of
which consists of four electrodes. The analysis of cross-correlations between cells through
principal component analysis has shown that, during sleep, neural patterns of activity
appearing in the previous waking experiences are replayed. This could be a mechanism
for consolidating memory formation [31]-[33].

In the work of Fujisawa, Buzsdki and collaborators, recordings are performed with
silicon probes which record from either the superficial (layers 2 and 3) or deep (layer 5)
layers of the medial prefrontal cortex. Cross-correlation analysis of these recordings has
identified neurons which differentiate between different trajectories of the rat in a maze,
as well as signatures of short term plasticity in the working memory task.

In all cases, raw data are obtained in the form of voltage measurements from each
electrode in the experimental apparatus. The raw data are then analyzed to determine the
number of neurons being recorded and to assign each voltage spike to a particular neuron,
in a process known as spike sorting [23, 34, 35]. The end result is a set of spike trains—a
list of all of the times at which a particular neuron fired—for each neuron observed in the
experiment.

1.2. Definition of correlation index

Spatial and temporal correlations in the data can be described in terms of a cross-
correlation histogram, which examines the correlations in the firing of pairs of neurons
over time. Cross-correlation analysis has been an important analytical tool in the study
of neural activity. Let us denote the set of recorded times of each spike event for a neuron
labeled @ by {ti1,....tin,}, with N; the total number of times that the neuron spikes
during the total recording time 7. These data can be extracted from the spike trains
depicted in figure 1. One can then determine the cross-correlation histogram of spiking
delays between each pair of cells 7, 7,

Hyr. 00 = 53 XZ Orsultias o). 0

Here At is the bin width of the histogram, and 6, a¢(;,t;5) is an indicator function
which is equal to one if |7 +t;, — t;5| < At/2 and zero otherwise. The cross-correlation
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Figure 2. Examples of cross-correlation histograms between two cells with an
inferred positive coupling (see also discussion in section 6), from recordings of 60
cells in a retina in the dark (Da 5-17), 51 cells in a retina with a random flickering
stimulus (F1 11-26) and 117 cells in the medial prefrontal cortex of a rat (CB
216-283). A characteristic correlation time of approximately 20 ms corresponding
to the central peak is visible.

histogram can be interpreted as the probability that a cell j spikes in the interval 74+ At/2,
conditioned on the cell 7 spiking at time zero, and normalized by the probability that the
cell j spikes in some time window At. The cross-correlation histogram approaches one at
very long times 7 when the firing of the cell j is independent from the fact that the cell ¢
has fired at time zero.

The correlation index is a measure of synchrony between two cells, and is defined as
the function H;; at its central peak (7 = 0), with bin size At

pij(Al)
pi(At) pj(At)

Ci j(At) is the number of spikes emitted by the cells i and j with a delay smaller than At,
normalized by the number of times the two cells would spike in the same time window
if they were independent. For At small with respect to the typical interval between
subsequent spikes of a single cell, there are never two spikes of the same cell in the same
time bin and therefore the correlation index is exactly the probability that two cells are

CL;(At) = Hy;(0, At) ~ 2)
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Figure 3. Examples of cross-correlation histograms between two cells with an
inferred negative coupling (see also discussion in section 6), from recordings of
51 cells in a retina with a random flickering stimulus, (F1 3-18) showing no large
anticorrelation bump, (F1 1-22) showing a correlation peak delayed by about
50 ms, and 60 cells in a retina in the dark, (Da 11-26) displaying an anticorrelation
bump with the characteristic time scale of 100 ms.

active in the same bin p;;(At) divided by the probability p;(At) p;(At) that they would
be active in the same time window assuming no correlation between them.

Some cross-correlation histograms for the data sets we consider are shown in
figures 2—4. The time bin At is a parameter in the correlation index analysis which
defines the relevant time scale for correlations. A characteristic time scale of some tens of
milliseconds is shown in figure 2 [36]. However, in retinal recordings long time patterns
appear especially in the presence of stimulus, and in vivo cortical recordings show long
time correlations which can be due, for example, to different firing rhythms or trajectory-
dependent activation of neurons (see figure 4), which are observed in the cross-correlations
obtained from cortical recordings by Fujisawa and collaborators.

Despite its usefulness as an analytical tool, cross-correlation analysis is unable to
account for network effects in a controlled way. That is, simply by treating each pair
independently it is not possible to determine whether the correlated activity of a single
pair of neurons is due to a direct interaction between them, or whether it results from
indirect interactions mediated by other neurons in the network. In section 1.3 we introduce
an artificial Ising network, inferred using the spiking probabilities p;(At) and pairwise

doi:10.1088/1742-5468,/2013 /03 /P03002 8
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Figure 4. Examples of cross-correlation histograms between two cells at long time
scales, from recordings of 60 cells in a retina in the dark, (Da 1-2) corresponding
to a positive coupling and no long time effects, and 117 cells in the medial
prefrontal cortex of a rat, (CB 216-283) corresponding to a positive coupling and
no long time effects and (CB 135-178) displaying nonstationary effects because
cell 178 is active only in the first half of the recording.

correlations p;;(At) on a fixed time scale At, which goes in this direction by reproducing
neural activity observed in the data beyond that which was used to infer the model.
This approach was introduced to analyze retinal data in [3, 4]. In section 7 we clarify
the relationship between the couplings J;; inferred by the Ising approach and the two-cell

approximation Ji(j?) derived from cross-correlation analysis. The Ising model we apply in
the following aims to go beyond cross-correlation analysis in the sense that it disentangles
direct couplings from correlations, correcting for network effects.

1.3. Ising model encoding of the activity

Neural activity represented in the form of spike trains can also be encoded in a binary
form. We first divide the total time interval of a recording of the activity into small time
bins of size At. The activity is then represented by set of binary variables s], hereafter
called spins, where 7 =1, ..., B labels the time bin and 2 = 1, ..., N is a label which refers
to a particular neuron. In the data we consider N spans a few decades (30-120). If in bin
7 neuron ¢ has spiked at least once then we set s] = 1, otherwise s] = 0.

doi:10.1088/1742-5468,/2013 /03 /P03002 9
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We write the probability of an N-spin configuration Py|s] in the data as the fraction of
bins carrying that configuration s = {51, S, ..., sy}, and define the empirical Hamiltonian
Hy([s] as minus the logarithm of Py. By definition, the Gibbs measure corresponding to
this Hamiltonian reproduces the data exactly. As the spins are binary variables, Hy can
be expanded in full generality as

N
k
Hy[s] = — Z Z Ji(l,zlz,...,ip Siy Siy - -+ Sy, (3)
k=0

11 <tg<-<ip

where J© is simply a constant ensuring the normalization of Py. Notice that, given an
experimental multielectrode recording, Py and Hy depend on the binning interval At.
Knowledge of the 2V coefficients J in (3) is equivalent to specifying the probability of
each one of the spin configurations. The model defined by (3) provides a complete, but
flawed, representation of the experimental data. First, it gives a poor compression of the
data, requiring a number of variables which grows exponentially with the system size to
exhaustively encode the probability of every configuration of the system. As a predictive
model of the future behavior of the experimental system, it will also likely perform poorly
compared to other reasonable models due to the overfitting of the data.

It is tempting then to look for simpler approximate expressions of Hy that retain
most of the statistical structure of the spin configurations. A sensible approximation to
the true interaction model should at least reproduce the values of the empirical one- and
two-point correlation functions,

1 1
Pi = E ZSZ, Dij = E ZSZ S;. (4)

These constraints can be satisfied by the Ising model defined by the Hamiltonian

N
HQ[S] :_Zhisi_zjijsisj- (5)
=1

1<j

The corresponding probability of a configuration in the Ising model is given by the
standard equilibrium Gibbs measure,

e*HQ[S]

Pl =z oo ©)

where the partition function Z[{h;}, {Ji;}] = >_, e 2 ensures that Y _P[s] = 1.

The local fields {h;} and pairwise couplings {J;;} are the natural parameters
for encoding the one- and two-point correlations because they are the conjugate
thermodynamical variables to these correlations. Indeed, the N (N + 1)/2 coupled
equations (4) can be solved by finding the couplings and fields which minimize the cross-
entropy between the inferred Ising model and the data

S*[{hi}, {Ji53] = log Z[{hi}, { Ji }] — Z hipi — Z Jij Pij- (7)

doi:10.1088/1742-5468/2013/03 /P03002 10
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This can be verified by computing the derivatives of S*[{h;},{J;;}] with respect to the
couplings and fields,

aS* hrL 3 JZ 1 —H2|s
[{8;{ ]}]:EzsieHH_pi’ (8)
OS*[{hi},{Ji; 1 —Hls
[{8}”{ i 22 sisie 8y (9)
1] s

At the minimum of (7) the derivatives must vanish, implying that the conditions (4) are
satisfied. Moreover, the minimal cross-entropy Sx[{pi}, {pi;}] = ming,y (5,35 [{hi}, { Jij}]
is the Legendre transform of the free energy F' = —log Z[{h;}, {Ji;}] of the Ising model.
It can be shown (see [21]) that the Ising model (6) is the probabilistic model with the
maximum entropy

S[P]=—=>_PIls|InPls] (10)

which satisfies the constraints that the average value of the one- and two-point correlations
coincide with the observed data (4) and that the probability distribution P[s] is normalized
such that all probabilities sum to one.

1.4. Previous results of the inverse Ising approach

It was put forward in [3, 37] that the Ising model defined by (6) not only reproduces
the one- and two-point firing correlations extracted from the data, it also captures other
features of the data such as higher order correlations and multi-neuron firing frequencies.
Thus the energy Hs provides a good approximation to the whole energy H; interactions
involving three or more spins in (3) are not quantitatively important, and it suffices to keep
in the expansion local fields and pair interactions only. Further simplification, however, is
not generally possible. Hamiltonians H; with no multi-spin interactions, corresponding to
setting all J;; = 0 in (5) with the fields h; chosen to reproduce the average neural activity,
provide a very poor approximation to (3). Such independent neuron approximations fail
to reproduce, for example, the probability that k cells spike together in the same bin for
k=1,...,N.
The claim in [3, 37] is based on the following points:

e Information-theoretical arguments: call S; the entropy of the independent neuron
model Hy, Sy the entropy of the Ising model (5), and Sy the entropy of the
experimental distribution Py. Then the reduction in entropy of spin configurations
coming from pair correlations, I = S7 — S, explains much of the reduction in
entropy coming from correlations at all orders (or multi-information), Iy = S; — Sy:
I/ In ~ 90% [3]. Hence higher order correlations do not contribute much to the multi-
information, implying that most of the correlation observed in the data is explained
simply through pairwise interactions.

e The multi-neuron firing frequencies, i.e. the probability of k£ neurons spiking together
in the same bin, predicted by the Ising model with pairwise interactions, are much
closer to the experimental values than those of its independent cell counterpart.

e Higher order correlations (three spin and higher correlations) predicted by the Ising
model are in good agreement with the experimental data.

doi:10.1088/1742-5468/2013/03 /P03002 11
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2. Statistical effects of finite sampling

Finite sampling of the experimental systems we consider here introduces fluctuations
which complicate the inverse problem. In this section we discuss the effects of finite
sampling noise on the empirical one- and two-point correlations, consequences for the
inference procedure, and statistical errors on the inferred couplings and fields.

2.1. Statistical error on empirical correlations

The inverse Ising approach requires measurements of the probability that each cell spikes
in a time bin p;(At) and that each pair of cells spikes in the same time bin p;;(At). These
probabilities can be obtained from the spike train data by counting the number of time
windows in which a cell, or two cells for the pair correlations, are active, divided by the
total number of time windows B. It is important to notice that the number of sampled
configurations, while large (typically the total recording time is of the order of one hour,
which with a time bin of 20 ms corresponds to roughly 10° configurations), is limited.
Therefore, the empirical correlations {p;}, {p;;} we obtain will differ from the ones which
would be obtained with an infinite sampling {p{™°}, {p{;"“} by typical fluctuations of the
order of {0p;}, {0p;;}, which we estimate in the following.
In our model, the spins are stochastic variables with Gibbs average

(si) = pi™e (11)
and with variance
o = (s7) — (s:)® = pi™ (1 — p{™). (12)

Their average p; over B independent samples is also a stochastic variable with the same
average as above, but with the standard deviation

p‘grue(l _ pt;rue) pz(l _ pz)
) P = : L >~ s 13
p \/ B E (13)

where in the last expression of (13) we have replaced the Gibbs average pi™® with the
empirical average, neglecting terms of the order 1/B?. Similarly, the pair correlations
have the average value

(sisj) = pii™, (14)
and variance
0i; = P (1 = pi™); (15)

therefore, their sampled average over B samples p;; has a standard deviation

i (1 — pij

2.2. The Hessian of the cross-entropy: the importance of regularization terms

Because of finite sampling problems the fields and couplings obtained as minimizers of (7)
are not necessarily well defined. As a simple example consider a single neuron (N = 1)
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with an average spiking rate r. The probability that the corresponding spin in the binary
representation is zero is exp(—r At) ~ 1 — r At, which is close to one for small bin widths
At. If the number B of bins is much smaller than 1/(r At) the spin is likely to be equal
to zero in all configurations. Hence p = 0 and the field solution of the inverse problem
is h = —oo. In practice, the number B of available data is large enough to avoid this
difficulty as far as single site probabilities are concerned. However, when two or more spins
are considered and higher order correlations are taken into account incomplete sampling
cannot be avoided; some groups of cells are never active simultaneously, which leads to
infinite couplings.

This problem is easily cured with a Bayesian approach. We now start with a set of
data consisting of B configurations of spins {s”}, 7 =1,..., B, and assume that the data
come from the Ising model with Hamiltonian (5). The probability or likelihood of a spin
configuration is given by (6). The likelihood of the whole set of data is therefore

B

Pk fsTV (D, Ju}] = H P[s"|{h;, Ju}| = exp (=B S*[{h:}, {Ji;}]), (17)

T=1

where the cross-entropy S* is defined in (7).

In order to calculate the a posteriori probability of the couplings and fields we need
to introduce a prior probability over those parameters. In the absence of any information
(data), let us assume that the couplings have a Gaussian distribution, with zero mean and
variance o2,

PPt} { T} = 2mo?) NN/ exp [—% (Z Jf;)] : (18)

20 —
1<J

So far, the variance is an unknown parameter. We expect it to be of the order of unity,
that is, much smaller than the number of configurations B in the data set. Multiplying
(17) and (18) leads to the Bayesian a posteriori probability for the fields and couplings
given the data,

Proo{ha}, { i x PRe[{sT}H i}, {Ju}]
PPt p ) {7} {sT)] = A ’ . (19
[{hid AT s H PUsT] )
where P[{s”}] is a normalization constant which is independent of the couplings and fields.

The most likely values for the fields and couplings are obtained by maximizing (19), that
is, by minimizing the modified cross-entropy,

S [{hed {Jish o) = S°[{hab (s} + (Z Jé) , (20)
i<j
where
1
el
The value of the variance ¢° can be determined, once again, using a Bayesian criterion.

P[{s"}] in (19) is the a priori probability of the data set over all possible Ising models.
The optimal variance is the one maximizing this quantity. The approach is illustrated in

Y= (21)

2
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detail in the simplest case of a single neuron, then extended to the case of interacting
neurons in the appendix.

The precise form of the regularization term is somewhat arbitrary. For convenience in
the calculations we use the regularization

Y Zpl — Di p] - pj) Jz2g (22)
1<j

This choice corresponds to a Gaussian prior for the interactions in a Bayesian framework.
Another regularization term we use is based on the L; norm rather than L, and favors
sparse coupling networks, i.e. with many couplings equal to zero,

VZ\/PZ — pi)pi (1 = pj)lJis1, (23)

1<j

which corresponds to a Laplacian prior distribution. In section 7 we describe the properties
of the L; and Ly norm penalties in more detail, and in section 4.1 we motivate the p;, p;;
dependence of the terms in the regularization.

When the number of samples B in the data set becomes large, (21) shows that the
regularization strength v — 0; the couplings and fields determined by minimizing (7)
always coincide with Bayes predictions in the perfect sampling limit. For finite B the
presence of a quadratic contribution in (20) ensures that S* grows rapidly far from the
origin along any direction in the N (N + 1)/2-dimensional space of fields and couplings.

Because of the regularization there exists a unique and finite minimizer of the cross-
entropy. The Hessian matrix y of the cross-entropy S*, also called the Fisher information
matrix, is given by

9% 5* 0%5*
_ 8h18hzf 8hi8Jk/l/
X 025* 62 S*

ahi/&]kl GJklaJk/l/
_ (sisi) — (si)(s0) ‘ (si s sv) — (si)(sw sv) ) ’ (24)

<Si/ Sk Sl> — <Si/> <Sk Sl> ‘ <8k Sy Sk Sl/> — <Sk 5l><5k’ Sl/>

where () denotes the Gibbs average with measure (6), andi=1,...,N, 1 <k <l < N.
The addition of a regularization term with a quadratic penalty on the couplings and
fields adds ~ times the identity matrix to the Hessian, and as the unregularized y is
a covariance matrix and hence non-negative?, this assures that the susceptibility of the
regularized model is positive definite. Thus S*[{h;}, {J;;},7] is strictly convex. This proves
the existence and uniqueness of the solution to the inverse problem.

4 Let ¥ = (&, ¥) where & = (z1,22,...,2n) and § = (y12, 13, ...,YN—1,N) are, respectively N- and N(N — 1)/2-
dimensional vectors. Then

Q_ﬁ -H-v= < |:Z ZCZ‘(SZ‘ — <82>) -+ Zykl(sksl - (sksl>)] > >0

k<l

for any 7.
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2.3. Statistical error on couplings and fields

In this section we compute the statistical fluctuations of the inferred couplings and fields
due to finite sampling of the experimental system.

As in section 2.1, let us assume that data are not extracted from experiments but
rather generated from the Ising model (5) with the fields {h;} and couplings {J;;} which
minimize the cross-entropy (7). From section 2.2 the probability of inferring a set of fields
{h;} and couplings {J;;} is proportional to exp(—B S*[{h;},{J;;}]). When B is very large,
this probability is tightly concentrated around the minimum of S*, that is, {h;}, {J5;}.
The difference between the inferred and the true fields and couplings is encoded in the
N(N +1)/2-dimensional vector Ay, ; of components {h; —h;'}, {Ji; — J;;}. The distribution
of this vector is asymptotically Gaussian,

- det B - -
P[An ] =~ GnB) NI exp <—§ ALJ X Ah,J) ) (25)

Statistical fluctuations of the couplings and fields are therefore characterized by the
standard deviations

/ /1
5h _ _1 zz’ 5JZJ = %) (X_l)ij,ij‘ (26)

Note that (13) and (16) can be also directly obtained from the covariance matrix .
Indeed linear response theory tells us that

Rpe=x+ B (27)

We deduce from (25) that &p,c obeys a Gaussian distribution as &;% 7, with the Hessian
matrix y replaced with its inverse matrix in (25). The typical uncertainties of the one- and
two-point correlations are given by dp; = \/(1/B)(x):; and 6p;; = /(1/B)(X)ij.ij, which
correspond exactly to (13) and (16).

3. The difficulty of the inverse Ising problem

The inverse problem can be subdivided into three different problems, which are of
increasing difficulty [20].

Reconstruction of the interaction graph

It is possible to reproduce qualitative features of the underlying interaction graph (i.e. the
set of interactions which would be inferred if the inverse problem was solved exactly),
such as the number of connections to a given cell or the range of interactions, without
determining the values of the couplings precisely. Knowing the rank of the couplings in
absolute value, for instance, gives an idea of the structure of the interaction graph. We will
see in section 7 that mean field approximations are only useful for finding precisely the
network of interactions in the case of weak interactions and not, as in the majority of the
analyzed neural data, for a dilute network with large couplings. These approximations
generally give, then, wrong values for the couplings but respect the ranking of large
couplings by magnitude, thereby allowing for the accurate recovery of the structure of
the interaction graph of large couplings.
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Reconstruction of the interaction graph and values of the couplings

It can be of interest to infer the values of the couplings more precisely, and to identify
reliable couplings, which are different from zero even when taking into account statistical
fluctuations due to finite sampling (26), and unreliable couplings which are compatible
with zero. A precise inference of the value of the couplings compared with the error bar will
be helpful to characterize changes in the values of couplings, which can occur for example in
a memory task [30]. Also, it would be of interest to characterize reliable negative couplings
with the aim of identifying inhibitory connections, which are particularly susceptible to
sampling noise and thus difficult to assign reliably.

It has been pointed out in [21] that the difficulty of the inference problem depends
on the inverse of the Fisher information matrix y~' (24). Whereas the susceptibility x
characterizes the response of the Ising model to a small change in the couplings or fields,
the inverse susceptibility x~! gives the change in the inferred couplings and fields due to
a perturbation of the observed frequencies or correlations. If data are generated by sparse
networks and if the sampling is good, then x~! is localized, i.e. it decays fast with the
length of the interaction path between spins in the interaction network. This property
holds even in the presence of long-range correlations and makes the inverse problem not
intrinsically hard.

It is important to notice that the sampling fluctuations in frequencies (13) and
correlations (16) do not come from a sparse network structure and thus x™' can lose
its localized properties because of sampling noise. In other words, overfitting can generate
very complicated and densely connected networks, which will have a large coupling-
susceptibility. A way to filter the data must then be found to efficiently solve the inverse
problem in the presence of sampling noise. The selective cluster expansion, which we
introduce in section 5, approaches this problem by including methods of regularization
and by building up a solution to the inference problem in a progressive way, including
only terms which contribute significantly to the inference so as to avoid the overfitting of
noise.

Reconstruction of the empirical correlations

The most difficult inference task is to find the local fields and the network of couplings
which truly satisfy the minimum of (7), and which therefore reproduce the frequencies
and correlations obtained from data. One can use such an inferred Ising model to then
predict, for example, the observed higher moments of the distributions (three body or
higher order correlations) or multi-neuron firing frequencies, as discussed in section 1.4.
The Ising model could also be used to predict the response to a local perturbation, which
could be due to a stimulation, or the ablation of a connection.

The reconstruction problem is difficult because a small change in the inferred
parameters can result in large changes in the correlations and frequencies given by the
inferred model. In other words, the susceptibility matrix may be dense, rather than sparse,
with many large entries. Let again &pyc denote the N (N + 1)/2-dimensional vector whose
components are the differences between the predicted and true values of the frequencies
and correlations. Typically inference errors come from the approximations made in the
resolution of the inverse problem. Using the linear response theory of (27) we can estimate
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the order of magnitude of the reconstruction error due to an inference error:
Ape = x| A, (28)

where |x| is the norm of the matrix defined as the sum over the rows of the maximum
element over the columns,

Xl =>_ MAaX X j- (29)

Let us imagine that a parameter h; has been inferred with an inference error of
the order Ah ~ 0.1, which is a typical order of magnitude of the expected statistical
fluctuations in the inferred parameters. This inference error can drastically change the
reconstructed p;. For example, for the recording of N = 40 neurons in the retina subject
to a natural movie stimulus [3] |x| = 0.6, and the consequent d, ~ 0.06 is of the same
order of magnitude as the p;, which is much larger than the statistical errors we expect
on these variables. We discuss in section 6 how the reconstruction behaves as a function
of the inference precision in the cluster expansion. This example explains why even if the
network is reconstructed at the precision corresponding to the statistical fluctuations (26)
we expect from the finite sampling, and therefore the inverse problem is quite accurately
solved, the statistical properties of the data on the inferred model can be much harder to
reproduce and may require sophisticated expansion and fine tuning of some parameters.

Note that equation (28) gives only an order of magnitude; the more precise matrix
dependence of the response in (27) tells us that the modes which correspond to large
eigenvalues of the Hessian matrix y have to be more precisely determined to solve the
reconstruction problem well, while the others, which correspond to small eigenvalues of
the Hessian matrix, have less impact on the reconstruction problem.

4. High temperature expansions and the mean field entropy S\

The main problem of the minimization of the cross-entropy S* (7) is the calculation
of the partition function Z, which, if done exactly, requires the sum over all 2%V possible
configurations of the system of N spins. Because this sum becomes prohibitive for systems
with more than ~20 spins some approximate solution of the inverse problem must be
found.

High temperature expansions [14], [38]-[40] of the Legendre transform of the
free energy are useful when the pairs of variables interact through weak couplings.
The Ising model with weak (of the order of N~'/2) interactions is the so-called
Sherrington-Kirkpatrick model. In this case the entropy S[{p;},{pi;j}] coincides
asymptotically for large N with

Swrl{pi}; {pis}] = Smal{pi}] + 5 log det M[{p:}, {pi;}], (30)

where

Sma[{pi}] = Z[_pi log p; — (1 — p;) log(1 — p;)] (31)

7
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is the entropy of independent spin variables with averages {p;}, and

M| {pitApijt] = Bij _ Diby , 392
il{pi}A{pii}] o= =p) (32)
which can be calculated in O(N?) time [14, 41], and is consistent with the so-called TAP
equations [42]. It is important to underline that what we call the mean field entropy Sy
corresponds to the entropy of a Gaussian model of continuous spin variables with averages
p; and variances p; (1 — p;).

The derivatives of Syp with respect to the {p;;} and {p;} give the values of the
couplings and fields,

(r)ys = — M )
Y Opii i —pps(L—py)
(hare) N S (urr) ( pi—1/2 ) (33)
i = = i\ G N DPil>
. o o M\l

where ¢;; = p;; — pip; is the connected correlation.

It is possible to get an idea of the goodness of the high temperature expansion from
the size of the correlation indices CIL;; = p;;/(pip;), which are the expansion parameters
of the high temperature series [14]. We note that in neural data, even if the connected
correlations are small, the correlation indices CI;; can be large because the probabilities
pi, pj that individual cells are active in a time bin are also generally small, and CI;; is of
order one. Histograms of the correlation indices for the different data sets we analyze are
shown in figures 13 and 14, and show that the correlation indices are small in absolute
value (|CL;| < 2.2) only in the data sets of in vivo recordings of the medial prefrontal
cortex of rats with tetrodes [31, 33]. We therefore expect the high temperature expansion
and in particular Syr to be a good approximation to the inverse problem only for this
data set.

4.1. Ls-regularized mean field entropy

A regularized version of the mean field entropy can be computed analytically [21]. The
derivation is as follows. First we use the mean field expression for the cross-entropy at
fixed couplings J;; and frequencies p; (see [39]) to rewrite

Stsing{pi}, {Ji}] = Sma[{pi}] — 5 logdet (Id — J') — Z Jij (pij — pi Dj), (34)

1<j

where Jj; = Ji; iv/Di(1 = pi)p;(1 — p;) and Id denotes the N-dimensional identity matrix.
We consider the Lo-norm regularization (22). The entropy at fixed data {p;}, {pi;} is

S8 {01} (9} = Sual{p)] + i | Sl {pi), U} + 7 T2 1 = pds(1 )
1 /
Sina[{pi}] + ?11,13 {—5 log det(Id — J')
- S0 M ) + Jer ) (3)
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where M [{p;}, {pi;}] is defined in (32). The optimal interaction matrix J’ is the root of
the equation

(Id =)' = M{{p;}, {pi}] +vJ = 0. (36)

Hence, J' has the same eigenvectors as M[{p;},{pi;}], a consequence of the dependence
on p; we have chosen for the quadratic regularization term in (22). Let j, denote the ¢th
eigenvalue of J'. Then

Svil{pit Apit. Al = Swmal{pi}] + 3> (log g + 1 — 1), (37)

g=1

where 1, is the largest root of /m? — rig(mg — 7) =7, and my is the gth eigenvalue of
M[{p:}, {pi;}]- Note that m, = m, when v = 0, as expected.

4.2. L;-regularized mean field entropy

With the choice of an Li-norm regularization, the entropy at fixed data p becomes

SI\L/IlF[{pi}a {pij }, 7] = Simal{pi}] + ?}llr; {—% log det(Id — J)

vy

— b M o))+ 9 11 (38)
i<j
No analytical expression exists for the optimal J’. However, it can be found in a polynomial
time using convex optimization techniques. The minimization of (38) is known in the
statistics literature as the estimate of the precision matrix with a constraint of sparsity.
Several numerical procedures to compute J efficiently are available [43].

5. Selective cluster expansion

When an exact calculation of the partition function is out of reach, and the amplitudes
of the correlation indices are large, an accurate estimate of the interactions which solve
the inverse Ising problem can be obtained through cluster expansions. Cluster expansions
have a rich history in statistical mechanics, e.g. the virial expansion in the theory of liquids
or cluster variational methods [44].

The selective cluster expansion algorithm (SCE) which we have recently proposed [20,
21] makes use of an assumption about the properties of the inverse susceptibility x™*
to efficiently generate an approximate solution to the inverse Ising inference problem.
x ! is typically much sparser and shorter range than y, implying that most interactions
inferred from a given set of data depend strongly on only a small set of correlations. Thus
an estimate of the interactions for the entire system can be constructed by solving the
inference problem on small subsets (clusters) of spins and combining the results. The SCE
gives such an estimate by recursively solving the inverse Ising problem on small clusters
of spins, selecting the clusters which give significant information about the underlying
interaction graph according to their contribution to the entropy S of the inferred Ising
model, and building from these a new set of clusters to analyze. At the end of this cluster
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expansion procedure, an estimate of the entropy and of the interactions for the full system
is produced based on the values inferred on each cluster.

Let Sr denote the entropy of the Ising model defined just on a subset I' = {iy,s,...}
of the full set of spins, which reproduces the one- and two-point correlations obtained
from data for this subset. The entropy S of the inferred Ising model on the full system of
N spins can then be expanded formally as a sum of individual contributions from each of
the 2 — 1 nonempty subsets,

S=> ASr,  ASr=5— ) ASp. (39)
r

I’cr

The cluster entropy ASr, defined recursively in (39), measures the contribution of the
cluster I" to the total entropy. It is calculated by subtracting the cluster entropies of all
possible smaller subsets of I' from the subset entropy Sr. Each cluster entropy depends
only upon the correlations between the spins in that cluster, and for small clusters it is
easy to compute numerically. The contribution of each cluster to the interactions, which
we denote AJr, is defined analogously and computed at the same time as the cluster
entropy. The elements of Jr are the couplings and fields which minimize the cross-entropy
S* restricted to the cluster I'. Note that in applications to real data, we employ some form
of regularization (22), (23) to ensure that the Hessian x is positive definite and to reduce
the effects of sampling noise.
As an example, the entropy of a single-spin cluster is, using (39) with N =1,

AS(iy[pi] = Sinalpi] = —pilogp; — (1 — p;) log(1 — p;). (40)
The contribution to the field of a single-spin cluster is
05
AR = b = ——=70 = log(pi/ (1 — p1). (41)
Pi

The entropy of a two-spin subsystem {i, j} is
S(z‘,j)[pi,pj,pij] = —pi;logpi; — (pi — pij) log(p; — pz‘j) - (pj - pij) log(pj - pij)
— (1 =pi — pj +pij) log(1 — pi — pj + pij).-

Using again (39) with N = 2, we obtain AS(; j)[pi, pj, Pij] = S [Pis 0j> Pis) — DS [pi] —
AS(; [p;], which measures the loss in entropy when imposing the constraint (s; s;) = p;;
on a system of two spins with fixed magnetizations, (s;) = p;, (s;) = p;. The contribution
to the field of the two-spin cluster is

Al =1og((ps = pig) /(1 = pi = ps + py)) — AR, (42)
and the contribution to the coupling is
2 — 72
= log pij — log(pi — pij) — log(p; — pij) +log(1l — p;i — p; + pij). (43)

Note that the two-cell couplings, which do not take into account network effects, reduce
to the logarithm of the correlation index for p;; < p; < 1, which is typically the case when
the time bin is much smaller than the typical interval between spikes. In this case p; oc At

doi:10.1088/1742-5468/2013/03 /P03002 20


http://dx.doi.org/10.1088/1742-5468/2013/03/P03002

Ising models for neural activity inferred via selective cluster expansion

and p;; o< At?, thus

2) oo L
Ji; log py (44)
It is difficult to write the entropy analytically for clusters of more than two spins, but
Sr can be computed numerically as the minimum of the cross-entropy (7). This involves
calculating Z, a sum over an exponential number of spin configurations. In practice this
limits the size of the clusters which we can consider to those with <20 spins.

A recursive use of (39), or the M&bius inversion formula, allows us to obtain ASr for
larger and larger clusters I' (see also the pseudocode of algorithm 1). It is important to
note that the form of AS is such that the sum of all cluster entropies over all possible
subsets, including the whole set, of a cluster I' is just the total entropy of the cluster Sr.
The analogous result also holds for AJ. This means in particular that by construction the
sum over all possible clusters for the full system of N spins yields the exact entropy S
and interactions J.

It is also possible to perform an expansion in S — Sy, where S is a ‘reference entropy’
approximating S which we expand around. As with S, the reference entropy Sy should
be computable on all possible subsets of the system, and should depend only on the one-
and two-point correlations of the spins in the subsets. Again, by the construction rule
(39) and independent of the functional form of Sy, summing over all the clusters will give
back the exact value of S — Sy for the full system. We will show in applications to neural
data (see section 6) that it can be useful to consider an expansion S — Sy rather than S
alone, using the mean field result as a reference entropy Sp. In some cases the expansion
of S — Sur converges much faster than the expansion of S alone.

The cluster entropy measures a cluster’s contribution to the total entropy, which could
not be gained from its sub-clusters taken separately. Intuitively, we expect that clusters
with small |AST| contribute little new information about the underlying interaction graph
which is not revealed by any of their subsets. Indeed, it has been shown [20, 21] that small
cluster entropies have a universal distribution, reflecting fluctuations in the experimentally
observed correlations due to finite sampling (13) and (16). Cluster entropies that are
nonzero due to real interactions between the constituent spins also tend to decrease in
magnitude as the cluster size becomes large, decaying exponentially in the size of the
shortest closed interaction path between the spins in the cluster. In the SCE therefore all
clusters which have |[ASp| smaller than a fixed threshold 7" are discarded. Selecting only
those clusters which have cluster entropies larger than a chosen threshold helps to avoid
the overfitting of noisy data.

Clearly, it is not possible to compute all of the 2 — 1 cluster entropies, corresponding
to all the nonempty subsets of the full set of spins, even for rather small systems. To
make the algorithm computationally feasible we must have a method for truncating the
cluster expansion. This is implemented in the SCE by a recursive construction rule for the
clusters included in the expansion (see the pseudocode of algorithm 2). We begin with the
computation of the cluster entropies for all N clusters of size k = 1. The contribution of
each cluster to the interactions is also recorded for later use. Each subsequent step follows
the same pattern. First, clusters with |ASp| < T are removed. We then include in the
next step of the expansion all clusters which are unions of two of the remaining clusters
of size k, I'' = I'; UT'y, such that the new cluster I contains k + 1 spins.
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The expansion naturally terminates when no more new clusters can be formed. This
approach prevents a combinatorial explosion of the number of clusters considered in the
expansion. It is also consistent with the idea of exploring paths of strong interactions in
the interaction graph, as new clusters are built up from smaller clusters which have already
been found to have significant interactions and which share many spins in common. Final
estimates for the entropy and the interactions are obtained by adding up all of the ASt
and AJr. Contributions of Sy and Jy are also added if the reference entropy is used in the
expansion.

5.1. Pseudocode of the cluster algorithm

In this section we present pseudo-codes useful for the practical implementation of the
inference algorithm, following [20].

The principal routine of the cluster algorithm is the iterative computation of the
cluster entropy, given in algorithm 1. When the routine to compute the entropies of various

Algorithm 1 Computation of cluster entropy AS(I")

Require: T' (of size K), p, routines to calculate Sy and S
ASF — SF - S[)’F
for SIZE = K —1to 1 do
for every IV with SIZE spins in I' do
ASF — ASF - ASF/
end for
end for
Output: ASr

clusters is called several times a substantial speed-up can be achieved by memorizing the
entropies ASr of every cluster. In section 5.2, we will discuss how to calculate the subset
entropy St in more detail.

In section 6, we discuss the performance of the algorithm and compare the results in
of the expansion in S alone, i.e. with no Sy r, and with a mean field reference entropy (30)
Sor = Sf/fF’F obtained using an L, norm regularization (37) and Sor = Sl\L/fFI using an L,
norm regularization (38) on the couplings {.J;;}.

The core of our inference algorithm is the recursive building-up and the selection of
new clusters, described in algorithm 2. The threshold 7', which establishes which clusters
will be kept in the expansion, is a parameter which is fixed in a run of the selective cluster
algorithm. The choice of the optimal threshold 7™ is discussed in the section 5.3.

5.2. Numerical optimization of the cluster algorithm

In this section we review some of the computational challenges of the algorithm and
numerical methods for running the algorithm efficiently.

The primary computational bottleneck of the selective cluster expansion algorithm is
the repeated solution of the inverse Ising problem and the computation of the entropy
on each K-spin system included in the expansion, which is used to calculate the cluster
entropy (see algorithm 1).
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Algorithm 2 Adaptive cluster expansion
Require: N, T, Sy, routine to calculate ASr from p
LIST « () {All selected clusters}
SIZE «— 1
LIST(1) <« (1) U(2)U...U(N) {Clusters of SIZE=1}
repeat {Building-up of clusters with one more spin}
LIST « LIST U LIST(SIZE) {Store current clusters}
LIST(SIZE+1) « 0
for every pair I';,I'y € LIST(SIZE) do
'y« TyNTy  {Spins belonging to I'y and to 'y}
'y T Uy {Spins belonging to I'y or to 'y}
if I'; contains (SIZE-1) spins and |ASr,| > T then
LIST(SIZE+1) « LIST(SIZE+1) UT'y  {add I'y to the list of selected clusters}
end if
end for
SIZE < SIZE+1
until LIST(SIZE) = 0
S — Sy, J — —%SO {Calculation of S, J}
for I' € LIST do
S<—S+ASF,J<—J—%ASF
end for
Output: S, J and LIST of clusters

Given a cluster I' the partition function of the K-spin system restricted to I,

Z[{hl}, {JU}’F] = Z exp Zhl S; + Z Jij SiSj |, (45)

{5;=0,1; iel'} el 1<j; 4,j€l

can be computed in time oc2%. Then one has to find the most likely set of {J;;} and {h;} for
each cluster given the experimental data, that is, we must solve the convex optimization
problem

min [ SR} (T} T) = log Z{h} (I 1T = k= S Jypy | (46)

{hi}.{Ji5} i€l i<j;i,j€T

No analytical solution exists for clusters of more than a few spins. As a single run of
the cluster expansion algorithm may include thousands or even millions of clusters, it is
critically important that the optimization problem (46) be solved as quickly as possible.

Given a starting value for the {J;;} and {h;}, we employ a hybrid approach which
combines the standard optimization techniques of gradient descent and Newton’s method
to step progressively closer to the minimum. Gradient descent steps are chosen along the
direction of steepest descent, while Newton’s method specifies a step direction towards
the minimum of a local quadratic approximation of S*. When far from the minimum, we
use gradient descent for its computational simplicity and numerical stability. Once the
{Ji;} and {h;} are determined to be close to the values which solve (46), we switch to
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Newton’s method, which requires more computational resources but has a much better
rate of convergence close to the minimum [45].

A careful choice of the initial conditions is also essential for obtaining a fast solution
with minimal computational effort. We begin the optimization problem with an initial
guess for {J;;} and {h;} based upon the assumption that the couplings and fields
minimizing S* will be similar to those that were found for smaller clusters containing
the same sites. In many cases this initial guess works very well, and the optimization
routine may find the minimum with just a single step. Just including this choice for the
initial interactions can cut the total running time of the algorithm in half.

As described in section 2.2, we may regularize the couplings {.J;;} by adding a penalty
term to S* for each coupling which is nonzero. Regularization is useful for controlling
spurious large couplings that arise from noise or undersampling of the experimental
system, as well as ensuring the convexity of the Hessian y, so that the inference problem
has a unique minimum at a finite value of the couplings. Common choices of the penalty
are based on the L;-norm

Y301 s (1= )1 (47)

1<J

or the Ly-norm

Vzpz — Di p] _pj) ij (48)

1<j

Such terms are natural in the context of Bayesian inference. The addition of (47) to S* is
equivalent to assuming a Laplacian prior distribution for the couplings, while the Ls-norm
penalty (48) corresponds to a Gaussian prior. Typically we take v ~ 1/(10 B p*(1 — p)?),
where p is the average spiking frequency for a given data set.

Use of the Li-norm penalty makes the optimization problem more difficult, as the
function to be minimized is no longer smooth. In particular, in this case the gradient of
S* is undefined when any of the couplings J;; = 0. To overcome the lack of differentiability
of S* we use a modified version of the projected scaled sub-gradient method of [46]. This
method makes use of the sub-gradient, a generalization of the gradient which is well
defined even when some couplings are zero. It also allows couplings to be set exactly to
zero during the step process, unlike a typical gradient descent or Newton’s method step.
Despite these additional complexities, the optimization problem including the L;-norm
penalty can be solved with similar speed and accuracy as in the Lo-norm regularized or
unregularized case.

5.3. Convergence and choice of the threshold T

In the following we describe the practical procedure for applying the inference algorithm
to a set of data. Because we do not know a priori the optimal value of the threshold 7™
we run the algorithm at different values of the threshold following the iterative heuristic
below:

e Start with a large value of the threshold T, typically T' = 1, at which only single-spin
clusters are selected.

e Infer the fields and the couplings at that threshold.
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o If the number of selected clusters has changed with respect to the previous value of
the threshold, run a Monte Carlo simulation to check the reconstruction of the first
and second moments. From the Monte Carlo simulation we obtain {p;*’}, {pj;°} and
calculate the relative errors on the reconstructed averages and connected correlations

rec rec rec ,,rec

Gis¢ = piy¢ —pi*° pi° with respect to their statistical fluctuations due to finite sampling,
rec

1/2 12
_ i (pi - pi)2 . _ 2 (CZ?C N Cz’j)2
v (N Z@: (0p;)? ) ’ ¢ (N (N —1) > (6ci;)2 ) - (49)

The denominators in (49) measure the typical fluctuations of the data expected at
thermal equilibrium (see (13) and (16)), and

dcij = Opij + pidp; + piop;. (50)

o Iterate this procedure by lowering the threshold 7" and stopping when the errors €, ~ 1,
€. ~ 1. The corresponding value of the threshold is the optimal threshold 7.

e Assign error bars to the inferred couplings and fields using (26).

Note that 7™ is chosen as the first value of the threshold such that €, ~ 1,e. ~ 1
in order to reconstruct the data with the simplest possible network of interactions,
i.e. that which has the smallest inverse susceptibility. Through the cluster expansion
one ‘fills in’ entries of the inverse susceptibility matrix Xi_ji,l = (0.J;;/0cy) of the inferred
Ising model in a progressive way, starting with the largest contributions and stopping
when the one- and two-point correlations are reconstructed within the uncertainty
provided by the finite sampling fluctuations. By decreasing the threshold, the number
of clusters which contribute to a given coupling increases, or in other words each inferred
parameter {h;},{J;;} depends on increasingly more experimental correlations, including
those which are poorly sampled. As a consequence, even if the underlying interactions
which have generated the data have a simple structure and a corresponding small inverse
susceptibility, poorly sampled correlations may lead to reconstructed networks with
complicated structure and large inverse susceptibility (see figures 5(D) and (E)). This
is especially true for small correlations, where the sampling fluctuations (13) and (16) can
be of a similar order of magnitude to the correlations themselves. Decreasing the threshold
more than is necessary to fit the one- and two-point correlations is undesirable, not only
because the complicated structure of interactions due to overfitting will not necessarily
correspond well with the underlying interaction network, but also because progressively
lower values of the threshold increase the computational difficulty of the inference problem.

We note however that there is no risk of overfitting data which have been perfectly
sampled. In this case, as there is no sampling noise, one is justified in fitting the model to
the data as tightly as is practically possible.

We now consider the typical pattern for the convergence of the reconstruction error
and its relationship with the convergence of the entropy expansion in more detail. First
let us imagine that the largest inference error is 6hi" on a field h;; the inference error on
the entropy 4S™ can be related to dhi" because h; and p; are conjugate variables (see (6))
and therefore (05/0p;) = —h;, or

pi ORI ~ §S™. (51)
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Figure 5. (A) Typical pattern of the relative reconstruction error €, for small
correlation lengths of the system, and without a reference entropy. At small
values of the threshold the reconstruction error decreases monotonically because
the entropy expansion is absolutely convergent. Note that without the reference
entropy €, ~ 0 at large values of the threshold, because when only clusters of size
one are included in the expansion the fit is equivalent to that of an independent
cell model and the experimental frequencies are matched perfectly. When €, ~ 1
(dashed line) and €, ~ 1 (not shown) a network which is able to reproduce the data
within the statistical uncertainties is found. At smaller values of the threshold,
erTors €y, €. < 1, corresponding to overfitting of the data. For systems which are
very well sampled (red line), the problem of overfitting is less severe. (B) Typical
pattern for €, for systems with longer correlation lengths; larger fluctuations of
€p, €. are present. (C) Thanks to the reference entropy the fluctuations of e,
€c at small threshold are smaller but €, at large threshold can be large. (D) By
lowering the threshold the susceptibility of the inverse problem increases: we
reconstruct less and less sparse networks while making the inverse problem more
computationally challenging. At small values of the threshold the relative errors
can become smaller than one, suggesting overfitting. When the data are overfit
the susceptibility of the inverse problem increases because the noise has no simple
network structure. (E) With the reference entropy at large values of the threshold
the inverse susceptibility is nonzero even if the underlying interactions are short
range, thanks to the properties of the Gaussian model [21].

The relationship between the convergence error on the fields and the reconstruction error
on the one- and two-point correlations is, as discussed in section 3, dp; =~ |x|d0h;, where
|x| is the norm of the susceptibility matrix as defined in (29). Using (51) the order of
magnitude of the typical reconstruction error is related to the convergence error of the
cluster expansion,

optec ~ %55@, (52)
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where p is the average spiking probability of the cell populations for a given choice of
the time bin. As mentioned in section 3, for |x|/p small the reconstruction problem is
easy, while for |y|/p large the reconstruction problem is difficult and small errors on the
inferred parameters give large errors in the reconstructed observables. Reconstruction of
the correlations within the sampling precision (13) requires

5prec _ |X|651n\/§ 1
op  py/p(1—p)

The same reasoning holds for the reconstruction error €., but again it gives only a rough
estimate, because the matrix dependence of (27) has to be properly taken into account.
A sketch of the typical pattern for the reconstruction errors by lowering the threshold T
is shown in figure 5.

To understand how the inference errors 6,", 6.J;% behave as a function of the threshold,
it is necessary to start from the understanding of the convergence of the cluster entropy
expansion as a function of the threshold. At large values of the threshold, important
clusters, corresponding to pairs with large correlation indices, are progressively added
up, resulting in a large change in the relative errors. As the threshold is lowered large
fluctuations of the relative errors may still appear. As already discussed in [21], dilute
interaction networks display a cancellation property of the cluster entropies. Clusters
which share the same interaction path, and which are not first neighbors in the coupling
network, have similar cluster entropies in absolute value but with different signs. When all
of the cluster entropies corresponding to a given interaction path are summed, their overall
contribution is typically much smaller than the contribution of any individual cluster.
Because such collections of clusters have cluster entropies which are similar in magnitude,
they are typically added to the cluster expansion in packets when the threshold is lowered.
Large fluctuations of the entropy error §S™ arise when the threshold is chosen between
the largest and smallest values of the cluster entropies for clusters belonging to a given
interaction path, thus ‘cutting’ the packet by including only part of the collection in the
expansion, such that the cluster entropies cannot cancel each other. Larger fluctuations
of the reconstruction error which are amplified by the direct susceptibility of the system
(52) arise in correspondence to these values of the threshold.

As shown in [21] the entropy expansion can be absolutely convergent as the threshold
is lowered (see figure 5(A)). When the correlation length of the system is small 4S™
decreases smoothly as the threshold is lowered. In contrast, when the correlation length of
the system is large, fluctuations of §S™ appear (see figure 5(B)). When taking Sy as the
reference entropy, as shown in figure 5(C), the relative error of the one-point correlations
€, 1s not small even when the threshold is large; the network corresponding to Sy is not
a network of independent spins, and the inverse susceptibility of the reconstructed system
is different from zero even for large values of the threshold (figure 5(D)). Fluctuations of
the error at small values of the threshold are smaller, because the entropies of nonzero
cluster entropies arising purely from sampling fluctuations (13) and (16) are smaller [21].

When a threshold 7™ is reached such that the relevant clusters corresponding to the
structure of the inverse susceptibility matrix in the real interaction graph have been
summed up, the entropy error §S™ goes to zero in the limit of perfect sampling. For
finite sampling, it goes to a residual value corresponding to the difference between the
entropy of the perfectly sampled system and the system which has been finitely sampled.

(53)
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At such values of the threshold €, = €, >~ 1. We have verified in the analyzed data sets that
the inverse susceptibility x~! for the inferred Ising model at the threshold T is sparse. For
example, for the retinal recording of 60 cells in dark conditions only 20% of the elements
of x~! are different from zero (within a precision of 107%). However, we note that the
convergence of the expansion is not guaranteed. When the sampling noise, which has no
simple network structure, is very large, it can mix up different packets and obscure the
structure of the inferred interaction graph.

6. Application to real data

As an example of potential applications of the selective cluster expansion algorithm (SCE)
we have re-analyzed, following [15], several sets of real data from multielectrode recordings
of collections of neurons. We examine in vitro recordings of salamander retinal ganglion
cells.

e A 4450 s recording of 51 ganglion cells in a retina illuminated with randomly flickering
bright squares [22]. The recording is made with a multielectrode array on a surface
of about 1 mm?, and approximately 20% of the ganglion cells on that surface are
recorded. The position of the receptive field of these cells is known.

e A 2000 s recording of the spontaneous activity of 60 cells of the same retina as
above observed in total darkness, of which 32 cells are common to the recording
with randomly flickering stimulus [22].

e A recording of 40 cells in a salamander retina presented with a 120 s natural movie
repeated 20 times. This recording is much denser; approximately 90% of the ganglion
cells on the analyzed surface are recorded [3].

We also study several in vivo recordings of neurons in the medial prefrontal cortex of
a rat during a working memory task.

e A 1500 s recording of 37 cells with tetrodes, each consisting of four electrodes, which
record both superficial and deep layers of the medial prefrontal cortex [31].

e A 2800 s recording of 117 cells with silicon probes which record both superficial (layers
2 and 3) and deep (layer 5) layers of the medial prefrontal cortex [30].

Figure 1 shows the raster plots displaying spike trains for the first second of recordings
of the different data sets. Unless otherwise indicated, the time bin we use to analyze the
data is At = 20 ms. Spiking frequencies and pairwise correlations for a fixed time window
are shown in figures 9 and 10. We observe from these figures that in cortical data the
frequency of the activity is higher, and in particular some cells spike very rapidly. The
retinal recordings are stationary in the sense that the spiking frequencies and pairwise
correlations of the data do not change over time. In the recordings with a natural movie
stimulus this holds at least on a time scale larger than 120 s. The cortical data sets,
however, are nonstationary. In particular, some cells are active only in part of the recording
of the 117 cells in medial prefrontal cortex, see figure 4. Note that in the analysis we present
here data are considered to be stationary and the time dependence is not explicitly taken
into account. We discuss the consequences of this assumption for nonstationary data and
how to go beyond this limitation in the conclusion.
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Figure 6. Performance of the SCE of S — Syr with Lo norm regularization
on retinal data as a function of the threshold T, analyzed with a time bin
of At =20 ms. The reconstruction errors e, (solid) and e. (dashed) (49) are
computed from Monte Carlo simulations. The value € = 1 is indicated by a red
dotted line, and the selected optimal threshold 7™ is marked in each plot with an
arrow. F1, flickering stimulus: left, whole set of 51 cells; right, subset of 32 cells.
Da, dark: left, whole set of 60 cells; right, subset of 32 cells. Nm, natural movie
stimulus: left, whole set of 40 cells; right, subset of 20 cells.

The correlation index histograms for some cells of the different data sets are shown in
figures 2—4. As discussed in section 1.2, the correlation index is the expansion parameter in
the high temperature expansion, and when it is small, as for the N = 37 cortical data set
(CA), it means that the interactions are weak and that Sy gives a good approximation
of the couplings. This implies also that the cluster expansion, with or without a reference
entropy, will converge easily. When the correlation indices are large the magnitude of
the couplings will be also be larger. In this case the convergence of the SCE and the
optimal expansion variable (i.e. S — Syr or S with no reference entropy) will depend on
the structure of the interactions. We explore this point in more detail below.

6.1. Performance of the algorithm for retinal data

We show the behavior of the reconstruction errors €, and €. as a function of the threshold
T on the retinal data in figure 6 for the expansion of S — Syr. Results on the convergence
of the algorithm and on the value of the inferred entropy are summarized in table 1
for the different procedures tested, including expansions without the reference entropy.
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These results include the value of the optimal threshold T%, as well as the size of the
largest cluster in the expansion K ..., the total number of clusters processed Niutc1, the
total number of clusters selected at Niyse1, and the inferred value of the entropy S, all
evaluated at T™.

As shown in the figures and in the table, the reference entropy Sy is helpful for the
inference problem when the SCE is applied to retinal data. The threshold T is lower for
the expansion of S alone with no Sy, implying an increase in the number of processed
clusters and a larger value for K,... For the flickering stimulus (F1) the procedure
without reference entropy did not converge even at a low value of the threshold. Here
small couplings, which would have been obtained through the mean field couplings in the
expansion of S — Syr, are important for the proper reconstruction of the correlations,
as mentioned in section 3. Decreasing the threshold enough to fit many small couplings
drives the SCE algorithm to consider very large clusters (K.« = 17 at the smallest value
of T tested), which slows the algorithm considerably.

Both L; and L, norm regularizations on S and Syr worked similarly well. In each
case we found the value of K. to be around 6-8 and the threshold T* varied between
107% and 107°.

We have also studied the inference problem on subsets of the full data sets described
above. As shown in the right column of figure 6, the value of the threshold T* and the
maximum cluster size K., for large subsets of spins are of the same order of magnitude
as for the full set. Moreover, the number of clusters selected increases approximately
linearly with the system size. This property was related in [20, 21] to the locality of the
coupling-susceptibility y ™!, and was shown to hold on artificial data of unidimensional
and bidimensional Ising models. This suggests that, for the chosen subset, the structure
of the interaction graph has not changed much locally.

6.2. Performance of the algorithm for cortical data

In figure 7 we show the performance of the algorithm on cortical data, using no reference
entropy and with L; regularization on the cluster entropies, and in table 1 we also give
the results for cases with Ly regularization and for the expansion of S — Syr. As expected
from the small values of the correlation indices, the SCE applied to the cortical recording
of N = 37 neurons (CA) works very well for expansions both with and without the mean
field reference entropy. Indeed, the expansion converges already at just K,,.x = 2 with the
reference entropy, and K., = 4 without it.

For the cortical recording of N = 117 cells we have tested the performance of the
algorithm with time bins of size At =5 ms (C5) and At = 20 ms (CB). In both cases the
convergence of the algorithm was faster without the reference entropy (see table 2). The
convergence of the algorithm for both At = 20 ms and At = 5 ms when expanding with
respect to the mean field reference entropy was very slow, and the relative errors ¢, €.
did not approach one at a threshold 7'~ 1077,

The poor performance of the expansion of S — Sy for cortical data, and the success
of the expansion in S alone, is in stark contrast with the analysis of retinal recordings.
This phenomenon is related to the fact that the interaction network which is capable of
fitting the cortical data is relatively dilute and consists of larger couplings, for which
the mean field result is a poor approximation. The presence of a reference entropy
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Whole set Subset

Figure 7. Performance of the SCE of S with L; norm regularization on cortical
data as a function of the threshold T'. The reconstruction errors €, (solid) and
€. (dashed) (49) are computed from Monte Carlo simulations. The value e = 1 is
indicated by a red dotted line, and the selected optimal threshold T is marked
in each plot with an arrow. CA, cortex recording of 37 cells analyzed with a time
bin of 20 ms; CB, cortex recording of 117 cells analyzed with a time bin of 20 ms;
C5, cortex recording of 117 cells analyzed with a time bin of 5 ms.

makes reconstructing the empirical correlations more difficult in this case, as the inferred
interaction network is then fully connected (even if many of these couplings are small).

As we expect from the fact that by increasing the time bin one unveils more of the
network structure and indirect couplings, the value of K., = 4 we obtain is smaller at
At =5 ms than at At = 20 ms. K., = 10 is quite large in the latter case, indicating that
some cells are connected with many others. This hub effect has been noted in [30, 47], and
it can be related to the structure of the probes which record cells from different layers.
For this data set, moreover, the value of K,,,, and of the threshold 7™ changes from the
subset of 30 neurons to the whole set, indicating a change in the local connectivity due to
the removal of many of the neurons in the full data set. A more detailed analysis of the
inferred structure will be performed below.

6.3. Computational time at T™*

As shown in figure 8, for all data sets for which the algorithm has converged, the
computational time at the threshold 7™ was not more than a few tens of minutes of
calculation on a single core of a 2.8 GHz Intel i7 processor. The computational time
increases with the number of processed clusters Ny (see figure 8) and the maximum
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Figure 8. Computational time of the SCE at threshold T™ for the different data
sets as a function of the number of processed clusters Ny All times are for
computations on one core of a 2.8 GHz Intel i7 processor. The computational time
grows with the number of processed clusters, which depends more strongly on the
structure of the interaction graph and on the number of sampled configurations
than on the total system size N. For a fixed maximal size of clusters, K.y, the
running time is roughly proportional to the number of clusters.

cluster size K.« as

Kmax
time ~ )~ Nygar (K) 25, (54)

K=1

which is roughly proportional to the number of clusters given the same value of K.

However, when the number of clusters becomes large the construction rule can become
slow, and in fact this can become the limiting step for the computational time of the
algorithm. In the cluster construction step we test whether the union of each pair of
clusters of size K in the list of selected clusters forms a new cluster of size K + 1. The
time necessary to complete this step thus scales quadratically with the number of selected
clusters, which may be quite large, particularly when expanding S without the reference
entropy Sp. While the vast majority of attempts to form a new cluster may fail, the simple
act of checking each possibility becomes computationally demanding.

6.4. Reconstruction of the first and second moments of the activity

The spiking probabilities and connected correlations obtained from Monte Carlo
simulations with the inferred parameters at T are close to those obtained from
experiments as shown in figures 9-10. Indeed, the conditions €. = 1, €, = 1 specify that
the difference between the inferred and empirical correlations is approximately the same
as the statistical uncertainty of the empirical correlations due to sampling a finite number
of configurations. We find that the reconstruction of the {p;} and {¢;;} is equally good
for all the different reference entropy and regularization choices, provided of course that
they reach the threshold 7™ at which e, €, = 1.
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Figure 9. Spiking frequencies p; and connected correlations c¢;; for retinal data
sets calculated from a Monte Carlo simulation of the inferred Ising model
(vertical) versus experimental values p;™", ¢i7" (horizontal). The error bars are
given by the statistical fluctuations 0p;, dc;;. Fl, flicker stimulus, 51 cells; Da,

dark, 60 cells; Nm, natural movie stimulus, 40 cells.

6.5. Reconstruction of third moments and probability that k cells spike in the same time
window

We have verified that the three-cell connected correlations ¢;;; and the probability P(k)
that £ cells spike in the same bin are also quite well reproduced by the inferred Ising
model, as shown in figures 11 and 12. Note that for the cortical recording of 37 cells (CA)
and of 117 cells analyzed with At =5 ms (C5) the connected three-cell correlations are
for the majority of the cells so small that it is difficult to separate them from the sampling
noise. We have therefore also plotted the correlations p;j;, which is the probability that
the three cells spike in the same time bin, in figure 12. We emphasize that, unlike the
reconstruction of the first and second moments, there are no a prior: reasons that the
Ising model should also reconstruct the higher moments of the experimental distribution,
because it is not the true model which has generated the data, and these measurements
are not used as constraints in the inference. Nevertheless, as discussed in section 1.4 this
model seems to reproduce fairly well the statistics of the data, at least for the c¢;j, and
the P(k).

Intuitively, the reason for such a success may be simply due to the fact that the
number of effective configurations that the system explores is 2°, and this number should
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Figure 10. Spiking frequencies p; and connected correlations c¢;; for cortical
data sets calculated from a Monte Carlo simulation of the inferred Ising model
(vertical) versus experimental values p;™, ¢i7" (horizontal). The error bars are

given by the statistical fluctuations dp;, dc;;.

be compared with the number of parameters N (N+1)/2 that we use to fit the distribution
(see discussion in [15]). In principle, any model with a number of parameters similar to
the effective number of configurations could be equally good. For the data sets we have
analyzed with N < 60 (see tables 1 and 2), we have that N (N + 1)/2 > 2°. For larger
systems with more than 100 cells, the exponential growth of 2% with N, due to the fact that
S o< N, will be difficult to compensate with the increase of the number of parameters oc/N2.
For the Fujisawa data sets with time bins of size 5 ms we have S = 5.9 5025 < N (N+1)/2,
but for 20 ms for we obtain N (N + 1)/2 = 6900 while 25 = 2.6 x 10%. Moreover, the
reconstruction of the higher moments is still quite good. This could indicate that the Ising
model, which is the maximal entropy model, is really a good model to reproduce the data.

6.6. Histogram of couplings, negative couplings and error bars on couplings

Once the couplings are inferred, the error bars 0.J;; can be calculated from (26). Figures 13
and 14 show the histogram of couplings in which we distinguish reliable couplings, for
which |J;;|/6.J;; > 3, from unreliable couplings, which are compatible with zero within the
error bars. As expected, because of the sampling fluctuations there are many unreliable
couplings (particularly small couplings), but these may be still necessary to accurately
reproduce the activity, as discussed in section 3. Large reliable couplings correspond
generally to large correlation indices (see the cross-correlation histograms in figure 2),
but the converse is not necessarily true.

An interesting issue is to separate inhibitory and excitatory connections. It is
important to notice that negative couplings can be due to undersampling. Indeed, as
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Figure 11. Reconstructed three-cell connected correlations c;j;, (vertical), and
probability P(k) that k cells spike in the same time bin (black), versus the
experimental ones ci;.(,? (horizontal) and P“P(k) (red) for retinal data. The
reconstructed values are obtained from a Monte Carlo simulation of the inferred
Ising model. F1, flicker stimulus, 51 cells; Da, dark, 60 cells; Nm, natural movie

stimulus, 40 cells.

already noted, they can correspond to cells which never spike together in the recorded
activity, but often these couplings also have large error bars and therefore will be classified
as unreliable (see the histograms in figures 13 and 14). Therefore, to properly define reliable
negative couplings it is important to know the error bars on the inferred couplings.

As shown in the histograms figures 13 and 14 in both retinal and cortical data there
are some large negative couplings which are reliable. There are fewer reliable large negative
couplings in dark and flicker retinal data, which can be related to the fact the majority
of the recorded cells in these data sets are of OFF cells.

In figure 3 we show the cross-correlation histograms of pairs of cells corresponding
to negative couplings. Cells with negative couplings can correspond to those with a large
central anticorrelation peak and a large correlation index, as is the case for Da 11-26, or
they can display a small negative correlation index as in the example of Fli 3-18, which
is perhaps attributable to network effects. Negative couplings can also be due to the fact
that the Ising approach reproduces pairwise correlations in a fixed time bin and does not
include the delay in response between neurons. Some couplings can change sign when the
bin size is changed, as shown in the example of Fli 1-22, which displays a correlation
peak shifted by about 33 ms with respect to zero. As noted in [15], the corresponding pair
recorded in dark conditions has an unshifted peak and the inferred coupling is positive.
Another case which is present in the NV = 117 cortical recording is the pair CB 135-178,
shown in figure 4, which has a negative coupling and a negative cross-correlation index
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Figure 12. Reconstructed three-cell correlations p;j; and connected correlations
ciji (vertical), and probability P(k) that k cells spike in the same time bin (black)
versus the experimental ones p:f;(,? , c?}f (horizontal) and P**P(k) (red) for cortical
data. The reconstructed values are obtained from a Monte Carlo simulation of
the inferred Ising model. CA, cortex recording of 37 cells; CB, cortex recording
of 117 cells analyzed with a time bin of 20 ms; C5, cortex recording of 117 cells

analyzed with a time bin of 5 ms.

for At =5 ms and At = 20 ms, because the neuron labeled 135 is active only in the first
part of the recording, so important nonstationary effects are present.

As shown in figure 13, correlation indices are large in the retinal data and many
couplings have large values (between —4 and 4). The histogram of couplings is similar for
the different data sets.

Figure 14 shows that large correlation indices and couplings are also present in the
cortical data, with the exception of the cortical system of 37 cells, for which the correlation
indices and couplings are the smallest. In the histograms the largest positive couplings
are of order one. In cortical data there are large reliable negative couplings which have
the same magnitude as the positive couplings. The network for the 117 neuron cortical
recording and At = 5 ms is sparser than the one for At = 20 ms, as shown by the large
peak at zero. Indeed, as already noticed, for At = 20 ms the structure of the inferred
network becomes more complicated with larger cluster sizes.

6.7. Network effects: comparison with correlation index and with inferred couplings on a
subset of data

We analyze the importance of the network effects in the inference by comparing the

couplings inferred via SCE with the two-cell couplings J?

i » and by comparing the
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Figure 13. Histogram of couplings for retinal data, compared to the histogram
of correlation indices. Reliable couplings are marked in black, and unreliable
couplings are marked in brown.

couplings obtained for a full set of data to those obtained when only considering a subset
of the whole system. As shown in figure 15 for retinal data the inferred couplings are
generally different from two-cell couplings, indicating that network effects are important.
Thus the correlations do not accurately reflect the structure of the interactions, and it is
particularly important to disentangle the couplings from the correlations. As shown for
the pair Fli 3-18 in figure 3, there can be negative couplings between a pair of cells even if
positive correlations are observed. In this case, the positive correlation is due to couplings
with other neurons.

As shown in figure 15 (right), most of the couplings calculated on the subsets of
cells are similar to the ones calculated on the whole set, though some couplings may
change their amplitude. The fact that many couplings are similar implies that the inverse
susceptibility is local, and therefore each coupling can be inferred from the knowledge
of the activity of its neighboring cells. Only if one neighboring cell is removed will the
coupling change.

As shown in figure 16, the correlation indices and the couplings for the 37-cell cortical
recording (CA) are very are similar, because not only is the network sparse, but also the
correlation length is small. The couplings calculated on a subset are also similar to the
ones for the whole set, except for some negative couplings. For the cortical data of 117
cells analyzed at At = 5 ms, only some two-spin clusters are enough to infer the couplings
in the cluster expansion. Nevertheless it is important to select the right ones rather than
simply including all the two-spin clusters in the inference procedure. The inclusion of all
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Figure 14. Histogram of couplings for cortical data, compared to the histogram
of correlation indices. Reliable couplings are marked in black, and unreliable
couplings are marked in brown.

the two-spin clusters would yield a fully connected interaction graph, much denser than
the observed network of couplings, which would not reproduce the observed correlations.
Typically, the large couplings Ji(f) correspond to real interactions, while the correlations

leading to smaller Ji(jz) reflect network effects rather than direct interactions.

6.8. Map of couplings for the N = 117 cortical data set

We show the contact map for the recording of N = 117 cortical neurons in figure 17, a
representation of the inferred coupling matrix. Note that the 117 cells are labelled from
1 to 300 as in the original recordings [30], which reflects more closely the position of
the recorded cells. Here large reliable couplings are indicated by dots. Positive couplings
are indicated by red (orange) dots while negative couplings are indicated by blue (light
blue) dots for the inference performed with 20 ms (5 ms) time bins. Several couplings
are similar when inferred with both 5 and 20 ms time bins. Fujisawa et al have analyzed
monosynaptic couplings in [30] corresponding to approximately 5 ms delayed peaks with
a characteristic width of about 1 ms. The coupling matrix we obtain has some similarities
with the connections identified by Fujisawa et al: there are ‘hub’ effects; i.e., some neurons
are connected to many others. The inhibitory or excitatory hubs found in [30] are indicated
in figure 17 by dashed lines. Neurons which are not recognized as hubs but which have
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Figure 15. Left, two-cell couplings J @ versus couplings; right, couplings inferred
from a subset of cells versus couplings inferred from the whole set. Reliable
couplings are marked in black, and unreliable couplings are marked in brown.

been identified as inhibitory or excitatory neurons are indicated by a dot—dashed line.
It is worth noticing that hubs and nonlocal effects could also depend on global states or
interactions between different layers. Indeed recorded neurons are in different layers. Few
connections between cells which are far apart in the numbering order seem to be present.

6.9. Map of couplings for the N = 32 retina recording in dark and flickering stimulus

The large positive (.J;; > 0.3) and reliable couplings are shown in the plane of the receptive
fields of the N = 32 cells in the retina shared by the recordings in dark (figure 18) and
with a flickering stimulus (figure 19). The centers of the receptive fields of the recorded
cells are identified in the receptive field plane. As pointed out in [15] the dark map is short
range in the receptive field plane. The map of couplings obtained with a flickering stimulus
is similar, but with some additional long-range large positive couplings. For example, the
coupling Da 11-26 is negative in dark conditions (see figure 3), but it is positive and has
a large correlation index in the data taken with the retina subject to a flickering stimulus.

7. Comparison with mean field model results

In this section we compare the properties of the effective Ising model inferred via SCE
with the one inferred using the mean field model (Gaussian approximation) alone. We
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Network effects are present especially for the CB set.
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Figure 17. Coupling map for Fujisawa data with 20 and 5 ms time bins. Large
positive couplings are shown in red, and large negative couplings in blue. Lines
indicate excitatory or inhibitory neurons which have been identified by Fujisawa
et al [30]. For more details see section 6.8.
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Figure 18. Map of inferred couplings in the receptive field plane of 32 retinal cells
recorded in the dark. Selective cluster expansion (top left), reliable couplings with
|Jij| > 0.3. Li- or La-regularized mean field model with small Bayesian penalty
strength v = 0.003 (top right, same network for both choices of the penalty); the
largest 48 couplings are represented, |J;;| > 3.5. Li-regularized mean field model
with large penalty strength (bottom left) 4" = 0.004; the value of 4’ is chosen to
have 47 couplings |J;;| > 0.3, which are plotted. Lo-regularized mean field model
with large penalty strength (bottom right) v = 5; the largest 48 couplings are
represented |J;;| > 1.1.

discuss the performance of the mean field model both with respect to the inference of the
structure of the couplings and the reconstruction of the statistics of the spiking activity
in the population (see section 3). Here we consider the mean field model with L; and
Lo regularizations, varying the value of the penalty parameter v over a wide range which
extends far above the optimal value in the Bayesian formalism; see (21) and the appendix.
Moreover, we discuss how the inference of the structure and the reconstruction of the
statistics of the spiking populations changes as a function of ~.
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Figure 19. Map of inferred couplings in the receptive field plane of 32 cells
recorded in flicker conditions. Selective cluster expansion (top left), reliable
couplings with [J;;| > 0.3 are represented. Lo-regularized mean field model
with small Bayesian penalty strength v = 0.0015, with the largest 48 couplings
represented |J;;| > 3 (top right). Li-regularized mean field model with small
penalty strength 4 = 8 x 10™%; the value of +' is chosen to have 49 couplings
with |J;;| > 0.3 (bottom left). Lo-regularized mean field model with large penalty
strength v = 7.5, with the largest 48 couplings represented, |J;;| > 0.7 (bottom
right).

To study the difference in the inferred couplings with respect to the cluster expansion
as a function of v, we define the average inference error €; with respect to the cluster
expansion as

1/2
e = (ﬁ S (- Jij)2> . (55)

i<j

The couplings {.J;; } in (55) are the couplings obtained via SCE which accurately reproduce
the empirical correlations.
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Figure 20. Performance of the Lo-regularized mean field model for the recording
of 51 cells in the retina with a flickering stimulus (F1). Left: mean differences
between couplings obtained from the mean field model and the couplings found at
T™ via the cluster algorithm, as a function of penalty strength. Right: couplings .J;;
obtained with the mean field model for the optimal value in a Bayesian framework
~v x 1/B and with a larger penalty v = 7.5, compared to the ones obtained with
the cluster expansion.

7.1. Mean field model with Lo regularization

The penalty parameter which is optimal in the Bayesian framework and which we have
used in the reference entropy for the cluster expansion is v = 1/(10 Bp*(1 — p)?) (see
(22) and (23)), where p is the average spiking probability over the whole population.
With this choice, the network of the largest couplings is very similar to the one inferred
with the cluster expansion, as shown in the map of the large positive couplings in the
receptive field plane for 32 retinal cells recorded in darkness (figure 18) and with a flickering
stimulus (figure 19). However, with this choice of v the mean field method overestimates
the magnitude of the large couplings (they are of order 10), and this gives a large error
for the inferred value of the couplings; see figure 20 obtained for the flicker data set (F1)
of N = 32 cells and for v = 0.0014. Furthermore, the frequencies and correlations are not
reconstructed at all; we find the reconstruction errors €, = 7000 and €. = 11 from the
expansion of S — Syp with Ly norm regularization at threshold 7' = 1, such that only
single-spin clusters are taken into account (see figure 6).

The error on the couplings (55) achieves its minimum at v, = 7.5, well above the
optimal value v as determined in the Bayesian framework; see figure 20. At this larger value
of the regularization strength the magnitude of the large couplings is better inferred and
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Figure 21. Reconstruction of the spiking probabilities {p;} with the Gaussian
model and Lo norm; the regularization strengths used are v = 7.5 (F1, N = 32),
v =20 (Da, N =32), vy =20 (Nm), v = 0.00023 (CA), and v = 10 (CB).
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Figure 22. Reconstruction of pairwise connected correlations c;; with the
Gaussian model and Lo norm; the regularization strengths used are v = 7.5 (Fl,
N =32), v=20 (Da, N =32), v =20 (Nm), v = 0.00023 (CA), and v = 10
(CB).

the reconstruction for the single site probabilities is good, even if the pairwise correlations
are loosely reconstructed as shown in figures 21 and 22. This large regularization term
has no meaning in the Bayesian approach; indeed, the regularization strength should
be of the order of 1/B (21). However, it seems to give an effective correction to the
mean field inference. The equivalent of a large regularization strength has, moreover,
been successfully applied to predict from large couplings the contact between sites of
proteins from coevolving sequences of the same family [48]. The maps of couplings in
flicker and dark conditions for the large regularization strength are shown in figures 19
and 18, respectively, and are in good agreement with the ones obtained with a Bayesian
regularization strength and the one obtained with the SCE.

For the other data sets the inference error obtained from Sy with Lo regularization is
not shown but it behaves similarly, with a minimum for v, > v (with yopt = 5 for Da 32,
Yopt = 1 for CB, and v,p¢ = 4 for Nm 32), with the sole exception of the cortical recording
of 37 cells (CA), for which 7,py = v = 0.00023. As already mentioned, the CA data are
characterized by small correlation indices and the mean field approximation works well in
this case.

The reconstruction of the empirical spiking probabilities is shown in figure 21, where
we have chosen Yiec = Yopt = 7 for CA, Yrec = Yopt for F1 and yec > Yopt for the other sets
for which the spiking probabilities were not reconstructed at the value v, (see the caption
for the values of y,pt). As shown in figures 22 and 23, two-cell correlations and probabilities
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Figure 23. Reconstruction of the probability P(k) that k cells spike in the same
bin with the Gaussian model and Ly norm; the regularization strengths used are
v="1.5(Fl, N =32),y=20 (Da, N =32), v =20 (Nm), v = 0.00023 (CA), and
v =10 (CB).

P(k) that k cells spike in the same bin are not well reconstructed. Interestingly, even if the
magnitudes of the correlations are not reconstructed, their relative ordering is respected.

7.2. Mean field model with L; regularization

In this section we discuss the inference with the mean field model using L; norm
regularization. The problem is the same as solving the inverse problem for the Gaussian
model with L; regularization, which has become very popular in the field of graphical
learning in recent years, and efficient methods to solve this problem, such as the Lasso
algorithm, have been found [18].

In the regularization strength of Sy used in the expansion of S — Syr we have used
the penalty (23) with a Bayesian penalty strength v o< 1/B. Figure 24 shows that, as in the
case of the Ly penalty, the value of large couplings with the Bayesian penalty (v = 0.033
for the F1 32 data set) is overestimated; when the penalty parameter is small the L; and
Lo regularizations yield very similar results. Again, to obtain couplings of the right order
of magnitude and with a smaller error €;, the penalty parameter should be larger, e.g. the
value v = 0.11. However, around this value of the regularization strength the inference is
very sensitive to changes in . As shown in figure 24 a small change to v = 0.15 (bottom
panel) results in a large change in the number of inferred couplings which are different
from zero.
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Figure 24. Performance of the L;-regularized mean field model for a 32 cell subset
of the recording of 51 cells in the retina with a flickering stimulus (F1). Left: mean
differences between couplings obtained from the mean field model using penalties
v (top) and 4/ (bottom) and the couplings found at T* via the cluster algorithm,
as a function of penalty strength (see main text). Right: couplings J;; obtained
with the mean field model with various values of the penalty strength compared
to the ones obtained with the cluster expansion.

We have therefore studied a simpler penalty with the form
Y 1l (56)
i<j
Increasing the value of 7 makes the inferred network sparser. It has been proven [49] that
the choice of the regularization strength

Viog N
’Y(/)pt = B (57)

selects only couplings which are statistically significant. This choice corresponds to zeroing
couplings which could be due to statistical fluctuations of the sampled correlations (16).

In figure 24 (bottom left) we show €; as a function of 4/, and indeed the value of
7" which corresponds to the minimal €; (55) is of the order of 7. For this choice of
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Figure 25. Reconstruction of the spiking probabilities {p;} with the Gaussian
model and L; norm; the regularization strengths used are 4/ = 0.003 (F1, N = 32),
v =0.004 (Da, N = 32), v/ = 0.0048 (Nm), 7/ = 0.00012 (CA), and v = 0.0029

(CB).
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Figure 26. Reconstruction of pairwise correlations with the Gaussian model and
Ly norm; the regularization strengths used are v = 0.003 (F1, N = 32), v = 0.004
(Da, N = 32), v = 0.0048 (Nm), v = 0.00012 (CA), and v = 0.0029 (CB).

the regularization the inference is less sensitive to changes in 4/, and couplings are more
progressively unveiled as ' is decreased.

The map of couplings obtained with a large L; penalty strength for the 32 retinal
cells is compared to the mean field map with (L, and L;) Bayesian penalty strength in
figures 18 and 19. The penalty strength is such that nearly all the nonzero couplings are
represented in the map (apart from three couplings with |.J;;| < 0.3 which are not shown).
The map of couplings obtained here is roughly similar to the map of couplings obtained
with the cluster expansion. It is worth noticing that, unlike the case with small penalty,
the Syr with large Ly penalty reproduces essentially the large correlations through a
sparse network of couplings, and therefore it seems that couplings are less disentangled
from the correlations. For example, in the flicker map there are several highly connected
sites which are not present in the small penalty strength map or in the SCE.

The reconstructed p;, ¢;;, and P(k) are shown in figures 25, 26 and 28, for the values
of Y4 As shown in figure 26 the very sparse network which is inferred for these values of
Yopt allows for the reconstruction of the largest correlations. The reconstruction of the c;;
is quite good for CB, which is in agreement with the very sparse network of large couplings
inferred via SCE. The ¢;;;, however, are not well reconstructed, as shown in figure 27.

As a conclusion, the inference with the mean field entropy, which is very simple
to compute, is able to successfully reconstruct the structure of the interaction graph
of large couplings, especially when using a small Bayesian regularization strength. The
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Figure 27. N = 117 cortical recording, reconstruction of three-cell connected
correlations with the Gaussian model and L; norm; the regularization strength
used is 7/ = 0.0029 (CB).
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Figure 28. Reconstruction of probability that k cells spike in the same bin with
the Gaussian model and L1 norm; the regularization strengths used are v’ = 0.003
(FI, N = 32), v/ = 0.004 (Da, N = 32), 4 = 0.0048 (Nm), v/ = 0.00012 (CA),
and 7' = 0.0029 (CB).

magnitude of the strongest interactions, however, is often overestimated; a larger value of
the regularization strength is useful for obtaining couplings that more closely match those
inferred via SCE, at least for the L, norm regularization. The ability of these methods
to reproduce the empirical correlations is limited. Notably, the L; regularization with
large penalty parameter reconstructs quite well the spiking probabilities and pairwise
correlations for the cortical data set CB, but not the higher order statistics.
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8. Conclusion

We have described a Selective Cluster Expansion (SCE) to infer the fields and couplings
which are the parameters of an Ising model from the measured spiking frequency and
pairwise correlations of a population of neurons. We have described the performance of
the SCE on retinal and cortical multielectrode recordings and checked that the Ising
model is capable of reproducing some features of the recorded spiking statistics, i.e. the
spiking probabilities in a time window of single, pairs of, and triplets of cells, and
the probability that k cells spike in the same time window. We have compared two
different SCE procedures: the expansion of the entropy of the inferred Ising model given
the measured spiking probabilities S[{p;},{pi;}], and the expansion of the difference
SHpit. {pi;}] — Smr[{pi}, {pij}] between the entropy S and a reference entropy, which
we have chosen to be the mean field entropy Syr. We have also implemented the use of
the Ly or Ly norm in the regularizations of the entropies.

We found that the use of the reference entropy Syr is helpful in retinal data, while
large population (N = 117) cortical data are more easily processed without Syp. The
difference comes from the different structure of the inferred interaction network. In cortical
data the inferred interactions tend to be sparse with some neurons largely connected to
the others, while the structure of the inferred retinal network is more homogeneous, with
on average more connections per cell. It is important to underline that the structure of
the inferred network also reflects the structure of the recording, as we discuss in more
detail in the following.

The SCE has been successfully tested here on large populations, ranging from N = 37
to N = 117 cells. There are still some limitations which slow down the algorithm in the
case of large data sets and which could be improved.

(1) When too many clusters are selected, the construction rule for new clusters becomes a
time limiting step in the algorithm. This can happen, for example, when considering
very low values of the threshold, particularly in the expansion of S without the
reference entropy Swyr.

(2) The necessity of using a Monte Carlo simulation to test the reconstruction properties
of the expansion at a fixed value of the threshold is one drawback of the SCE method.
Some theoretical arguments to fix the optimal threshold or an approximation in the
direct problem could be used to speed up the algorithm, especially at large N where
the thermalization of the Monte Carlo simulation can be slow.

(3) Decreasing large fluctuations of the entropy expansion as a function of the threshold
avoiding the cutting of packets of clusters sharing the same interaction path could
improve the convergence of the entropy expansion.

Finally, we have compared the SCE results with the simpler inference from Syr with
Ly or Ly norm regularization over a wide range of values of the regularization strength. Syr
corresponds to the entropy of a Gaussian model in which spins are treated as continuous
variables. Lo regularization penalizes large couplings preferentially, while L, regularization
imposes a sparsity constraint on the inferred network for large values of the regularization
strength. Fast methods of solution for either choice of the regularization are available,
such as the LASSO method for the L; norm regularization [43].
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We have found that generally the couplings and fields inferred using Sy are not able
to reproduce the spiking statistics, including the one- and two-cell spiking probabilities.
The exception to this rule is the N = 37 cortical recording data (CA), in which the
correlation indices are small, and therefore Sy is a good approximation of S. However,
as we have checked for the retinal recordings of 32 cells in the dark (Da 32) and with
a flickering stimulus (F1 32), where the positions of the receptive fields are known, Sy
correctly reproduces the structure of the network of large couplings found with the SCE
for small, Bayesian regularization strengths, and for large regularization strengths in the
Lo norm case. The Lq-regularized Sy with a large value of the regularization strength
is less effective in reproducing the structure of the network; on the other hand, it infers
a set of parameters which reproduce quite fairly the spiking frequencies and correlations
for the N = 117 cortical recording (CB), but not the connected three-cell correlations or
the probability that & cells spike in the same bin P(k).

8.1. Discussion

The potential long term applications of the inverse Ising approach to describing neural
activity from data [3, 4, 50] are very interesting and promising, ranging from unveiling
the structure of connections in a neuronal network [9] from data to understanding, for
example in the retina, how a stimulus is encoded [51], to interpreting learning experiments
in cortical recordings [30, 31|, and to having predictive tools for the system from the
recorded activity. Even if right now it is difficult to assess the utility and applicability of
the stationary inverse Ising approach that we have discussed in the large-scale analysis of
neural data, different extensions of this model may be possible, some of which have already
begun to be explored. We discuss in the following some limitations of the approach we
have described and possible extensions.

8.2. Sampling problems

Data are affected by different limitations which could affect the outcome and the
applicability of the inference.

(1) The recorded area is limited and the recorded neurons are often a subpopulation of
the whole population of cells. Indeed, this is often true because it is impossible to
record all cells in a neuronal system. Even if the recorded area is limited, the inverse
problem is well posed when the inverse susceptibility is short ranged (decaying within
the recorded distance) as shown in [20, 21]. However, even if by solving the inverse
problem we remove the network effects between the recorded cells and extract the
direct couplings, these couplings are still effective couplings because of the influence
of unrecorded cells on the system which is recorded. It would be important to study
to what extent the inferred ‘effective’ models are still predictive of the behavior of the
sampled population when, for example, a perturbation is applied to the system.

(2) Apart from sampling errors due to finite recording time, which we have previously
discussed, data are preprocessed by spike sorting [35, 52|, and also in this process
there are errors. It would be important to study how these errors affect the outcome
of the inference.
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(3) In the Ising approach, as described above we do not take into account dynamic effects
or temporal correlations between time windows. This corresponds to the fact that we
fix a time bin At on the time scale of relevant correlations. However, the relevant time
scale can differ for different pairs of neurons, and delay effects can be present. The
incorporation of dynamical effects can be improved in the Ising model, as in [23, 53].

(4) The above Ising approach can be improved by taking into account a nonstationary
external drive or stimulus. Explicitly including a time dependent external stimulus
could help in removing couplings which arise from this external stimulus combined
from the partial sampling of the population [35, 51, 54, 55]. It is crucial to study the
importance of these external drive effects in the inferred couplings. In the process of
including a time dependent external stimulus, it is important to avoid the overfitting
of the system by not increasing too much the number of parameters used to describe
the system. To this extent it seems promising to combine the inference of the couplings
with generalized linear models [51, 56], which include the description of the temporal
response to a stimulus with a filter function which depends on a limited number of
parameters. A more detailed description of the response to the stimulus could be also
useful for removing spatial correlations between neurons induced by the structure of
the stimulus, especially in retina recordings.
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Appendix. Optimal choice for the regularization parameter ~

In this appendix we discuss how the optimal value for the parameter =~ in the Lo
regularization (22) can be determined. As explained in section 2.2, the regularization
term can be interpreted as a Gaussian prior Py over the couplings. Let us call o2 the
variance of this prior. Parameters v and 1/0? are related through

1
2 2
1-— = — Al
(=P =g (A.1)
where we have assumed that the single site frequencies p; are uniformly equal to p. To
calculate the optimal value for v, or, equivalently, for o2, we start with the case of a single

spin for the sake of simplicity, and then turn to the general case of more than one spin.

A.1. Case of N =1 spin

For a unique spin subjected to a field h the likelihood of the set of sampled spin values,
{s7}, is Py[s] = exp(Bph)/(1 + e¢")B. Here p denotes the average value of the spin over
the sampled configurations (4). We obtain the a posteriori probability (19) for the field h
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Figure A.1. Logarithm of the marginal likelihood (with a minus sign, and divided
by the size B of the data set) versus variance o2 of the prior distribution of the
field. Parameters are B = 100, p = 0.02.

given the frequency p,

exp(—h?/(20%) + B ph — Blog(1 + e"))/v2mro?
P(p, B,o?)

where the denominator P(p, B,0?) (marginal likelihood) is simply the integral of the
numerator over all real-valued fields h. Given p and B we plot I = —log P(p, B,0?)/B as
a function of 0. The general shape of I is shown in figure A.1. The value of 0% minimizing
1 is the most likely to have generated the data, and should be chosen on Bayesian grounds.

For more than one spin calculating the marginal likelihood would be difficult. We
thus need an alternative way of obtaining the best value for o2. The idea is to calculate I
through a saddle-point method, and include the Gaussian corrections which turn out to be
crucial. This approach is correct when the size of the data set is large. A straightforward
calculation leads to

Poosi[hlp] =

(A.2)

r 1 1 exp(—h*)
I ~log(1 ) —ph*+ = () + -5 log|1+ = A3
where I' = 1/(Bo?) and h* denotes the root of (1+exp(—h*))~"' —p+T h* = 0. I decreases
from I(0? = 0) = log 2 with a strong negative slope, dI/do?(0) ~ —B p?, and increases
as logo?/(2B) for large values of the variance. Expression (A.3) cannot be distinguished
from the logarithm of the true marginal likelihood I shown in figure A.1.

A.2. Case of N > 2 spins

The above saddle-point approach can be generalized to any number N of spins, with the
result

1= b}, (b, o)) + 5 towdet (14 ) (A4)

where S* was defined in (7) and x is the N+1N (N —1) = $N(N +1)-dimensional Hessian
matrix composed of the second derivatives of S* with respect to the couplings and fields
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(24). In principle, x could be diagonalized and the expression (A.4) calculated. However,
this task would be time consuming. As we have seen in section A.1, we expect I not to
increase too quickly with o2 (for not too small variances) and approximate calculations of
I can be done under some data-dependent hypothesis. We now give an example of such an
approximation, valid in the case of multielectrode recordings of neural cell populations.

A simplification arises when the number B of configurations and the frequency p
are such that (a) each spin ¢ is active (=1) in a number of configurations much larger
than 1 and much smaller than B, i.e. 1 < B X p < B, and (b) the number ny of pairs
of spins that are never active together is much larger than one and much smaller than
N(N —1)/2. These assumptions are generically true for the applications to neurobiological
data. For instance, the recording of the activity of N = 40 salamander retinal ganglion
cells in [3] fulfils conditions (a) and (b) for a binning time At =5 ms: a cell ¢ firing at
least once in a time bin corresponds to s; = 1, while a silent cell is indicated by s; = 0.
More precisely, (a) the least and most active neurons respectively fire 891 and 17 163 times
(among B = 636 000 configurations) and (b) ny = 34 pairs of cells (among 780 pairs) are
never active together.

Condition (a) allows us to omit the presence of I' in the calculation of the fields,
h; ~ log p;, to the first order of a large (negative) field expansion. Condition (b) forces
us to introduce a nonzero I' to calculate the couplings, with the result that interactions
between pairs ¢, j of cells not active together are equal to J;; >~ logI' + O(loglog(1/I")).
Finally, we obtain the asymptotic scaling of the entropy when I' — 0,

r 1
S* ~ny 5 (log')? + O(I‘ log I"log log f) (A.5)

We are now left with the calculation of the determinant in (A.4). From assumption (b)
the number of pairs of neurons not spiking together is small with respect to N2, meaning
that most of the eigenvalues A* of the Hessian matrix of S* are nonzero. Hence,

N(N-1)/2 9
@ N
log det (1 + %) = Z log (1 + %) ~ - logT. (A.6)

a=1
Putting both contributions to I together we get
r , N?
I(T') ~ ny E(log r)”— 1B logT. (A.7)

The optimal value for the variance o is the root of

d7 (%) N2 %) N2
— () =0~ —(logI')? — ~ —(log B)* — — o°. A8
D) =0 P logT)? — e~ 2 (log BY — S o (A8)
We finally deduce the optimal variance
9 log B\
o’ ~2ny N . (A.9)

For the data described above we find 02 ~ 8.
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