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Relative rate and location of intra-host HIV
evolution to evade cellular immunity are
predictable
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Andrew J. McMichael6 & Arup K. Chakraborty1,2,3,4,8,9

Human immunodeficiency virus (HIV) evolves within infected persons to escape being

destroyed by the host immune system, thereby preventing effective immune control of

infection. Here, we combine methods from evolutionary dynamics and statistical physics to

simulate in vivo HIV sequence evolution, predicting the relative rate of escape and the location

of escape mutations in response to T-cell-mediated immune pressure in a cohort of 17

persons with acute HIV infection. Predicted and clinically observed times to escape immune

responses agree well, and we show that the mutational pathways to escape depend on the

viral sequence background due to epistatic interactions. The ability to predict escape

pathways and the duration over which control is maintained by specific immune responses

open the door to rational design of immunotherapeutic strategies that might enable

long-term control of HIV infection. Our approach enables intra-host evolution of a human

pathogen to be predicted in a probabilistic framework.
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H
IV evolves to accumulate mutations that enable the virus
to escape host immunity1, limiting control of infection2,3.
Viral fitness constraints limit these mutational

pathways4–6, but these constraints are complicated because the
fitness cost of escape mutations can be compensated by mutations
elsewhere in the proteome7,8. This can make the ability to escape
immune responses by mutation contingent on the virus’s
sequence background. Therefore, simply focusing immune
responses on parts of the viral proteome that appear conserved
by local measures of mutability (for example, entropy) is
insufficient for the design of effective strategies for controlling
infection by limiting escape6,9–11.

Ideally, vaccine-induced immune responses should be directed
towards combinations of epitopes where escape mutations are
highly deleterious in diverse sequence backgrounds, thus mini-
mizing the probability of escape and allowing long-term control
of infection. Indeed, prior studies have observed connections
between epitope targeting and disease progression12. To take
steps towards this goal, knowledge of how the virus’s replicative
fitness depends on its sequence (its fitness landscape), with
explicit accounting for coupling between multiple mutations, is
required. This knowledge, combined with evolutionary dynamics,
can then predict how diverse viral strains will evolve in
individuals when subjected to different immune responses. To
our knowledge, such studies of evolutionary dynamics have not
been performed previously for any human pathogen, but could be
used to discover optimal combinations of epitopes as vaccine
targets.

Recently, we proposed a computational model to translate
sequence data of HIV polyproteins into estimates of how the
frequency of different HIV strains across the host population
depends on genetic sequence10,13. This least-biased14, or
maximum-entropy, model for the prevalence is constrained to
reproduce the frequency of single and double mutations observed in
the HIV sequence data, and takes the form of a Potts model from
statistical physics. Similar maximum-entropy models have been
used to study the properties of neuronal networks15, segments of
antibody sequences15,16 and structural contacts in protein families17.

Following simple evolutionary models, fitter viruses are
expected to be more prevalent, at least over very long time scales
(that is, in the limit that the distribution of sequences reaches a
steady state)18,19. The connection between prevalence and fitness
could be obscured by many factors, including the breaking of this
assumption, especially when the virus population is under the
influence of host immunity, which drives the evolution of escape
mutations. However, for the HIV population, past analyses and
the arguments below suggest that the relationship between
prevalence and fitness is relatively simple.

Although human T-cell responses lead to the selection of
escape mutants, these responses are extraordinarily diverse20,
because of the enormous diversity of HLA genes in the
population. Thus, the same epitopes are not consistently
targeted among different hosts. For example, of the 363
residues in the immunogenic proteins p17 and p24, only 46 are
targeted by 410% of humans, none by 423% and 146 residues
are not targeted at all10. Furthermore, deleterious escape
mutations can revert when the virus is transmitted to a new
host21. Although a few HLA-epitope combinations have been
associated with better outcome in infected persons, HIV has not
been persistently subjected to classes of effective natural or
vaccine-induced memory immune responses. Thus, unlike viruses
such as influenza22,23, at the population level, HIV evolution is
not narrowly directed over time because of the progressive
fixation of mutations to evade memory immune responses.

Of course, in individual hosts the virus evolves to evade host
immunity and this is an important driver forcing HIV to explore

sequence space. Compensatory mutations can arise in conjunc-
tion with deleterious escape mutations, and therefore these
combinations of mutations are observed more frequently than by
chance in the circulating virus population. Similarly, combina-
tions of mutations that are especially deleterious may be observed
less frequently than by chance. These correlations, which reflect
the host–pathogen riposte, are the key inputs to our inference
procedure, and thus our landscape describes the collective
mutational pathways that HIV uses to evade host immunity.
Because of the great diversity of human immune responses,
specific sets of correlated mutations observed at the population
level, which inform our inference procedure, cannot be uniquely
assigned to individual HLA molecules alone24.

Theoretical and computational studies suggest that, for the
reasons noted above, the rank order of the inferred prevalence of
HIV strains is statistically similar to the rank order of intrinsic
fitness25. The same analysis suggests that phylogeny, which biases
the sequence distribution due to shared evolutionary history, also
affects the relationship between prevalence and fitness. These
effects are small, however, unless the sequences are separated by
many mutations. Viral sequences that evolve in a single infected
individual are more closely related. The arguments noted above
suggest that the HIV population is approximately at a steady state
for strains separated by modest mutational distances, and thus
our inferred landscape can be used to study HIV evolution in
patients. Recent work also suggests that recombination facilitates
our inference of fitness landscapes of HIV from virus population
data26. Moreover, experimental tests showed robust correlation
between our fitness estimates for HIV Gag p17 and p24 and
in vitro replicative capacity for a library of HIV strains generated
by introducing mutations into these subunit proteins of an NL4-3
reference strain10,13. These results support the assertion that
prevalence and fitness should be closely linked for HIV, at least
for sequences that are phylogenetically not too distant.

Here, we first infer the fitness/prevalence landscape of HIV
polyproteins. We then combine the inferred fitness landscape
with a simple model from population genetics, and incorporate
knowledge of the host immune response to investigate how fitness
constraints influence in vivo non-equilibrium viral evolution in
response to T-cell-mediated immune pressure in a cohort of 17
persons during acute HIV infection. These simulations yield
predictions for both the relative time necessary for specific CD8þ

T-cell epitope escape mutants to dominate the virus population in
the host as well as the specific residues at which escape mutations
are most likely to arise. We illustrate the potential effects of the
viral sequence background on escape through some examples.
Explicit simulation of dynamical escape trajectories takes into
account the contribution of multiple pathways to escape, and we
contrast the enhanced predictive power of the dynamic simula-
tions with static measures of fitness. Our results suggest that by
combining stochastic evolutionary dynamics with the fitness
landscape of a human virus and knowledge of the immune
response, its evolution in individual hosts is predictable.

Results
Fitness landscape and patient data. In our model, the prevalence/
fitness P(z) of an HIV protein sequence z¼ {z1, z2, y, zN} is

PðzÞ ¼ exp �EðzÞð Þ
Q

;

EðzÞ ¼ �
XN

i¼1

hiðziÞ�
XN � 1

i¼1

XN

j¼iþ 1

Jijðzi; zjÞ:
ð1Þ

Here, N is the length of the sequence and Q is a normalizing
factor; zi denotes the amino acid at each residue i. Following the
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language of statistical physics, our proxy for fitness is a quantity
referred to as energy (E). The energy depends on the mutability of
individual residues (quantified by the h parameters) and the
entire sequence of the viral protein with explicit account for
synergistic (or antagonistic) interactions between mutations in
different residues, quantified by the J parameters. Sequences
with high energies are estimated to be relatively unfit, and
vice versa.

Using equation (1) we inferred the fitness landscapes of all HIV
proteins except gp120, far beyond the limited set of proteins we
had previously considered10,13, on the basis of the HIV sequence
data obtained from thousands of infected individuals beyond the
patients studied in this paper (Supplementary Table 1). The
exclusion of gp120 was due to the combination of its length and
high variability, which makes model inference more challenging.
We note that, although the inference method27,28 (see the
‘Methods’ section for details) constrains only the frequencies of
single and double mutations to be those observed in the sequence
data, the probabilities of observing higher-order mutations in the
sequences are also recovered (Supplementary Fig. 1).

In the infected individuals that we studied, a comprehensive
analysis of acute-/early-phase CD8þ T-cell responses to auto-
logous virus had been performed and time to escape had been
experimentally defined29. Because of the likely importance of
early T-cell responses in disease progression2,30,31, we focused on
epitopes targeted early in infection (first response to the epitope
detected r50 days post estimated Fiebig stage I/II (ref. 32),
spanning a time from the first detection of plasma viremia to
shortly after resolution of peak viremia in acute infection). Data
were also collected most frequently during acute infection29,
allowing for a more accurate estimation of early escape times33

(see the ‘Methods’ section).

Illustrations of the importance of sequence background on escape.
Cases of identical epitopes targeted by different patients illustrate
how sequence background can strongly affect the dynamics of
escape. As one example, escape from the Gag epitope

TPQDLNTML180–188 (TL9) occurred after 122 days in patient
CH185, but in patient CH159, who targeted this same epitope
restricted by the same class I molecule, escape mutations
were not observed even up to 1,103 days after the response to
this epitope was first detected. Our calculations show
(Fig. 1a,b; see also Table 1) that this is because of differences in
the sequence background in the transmitted/founder (T/F) viral
strains in these two patients. For patient CH185, the background
amino acid sequence was far more conducive to escape. In
contrast, specific amino acids in the sequence background
in patient CH159 displayed strong antagonistic interactions with
the escape mutation 182 G (that is, large negative J parameters,
see equation (1)), thus substantially increasing the predicted
fitness cost of mutations within this epitope for CH159.

As another example of the effects of differences in background
viral sequence on escape times, consider the Gag epitope
TSTLQEQVAW240–249 (TW10) targeted by patients CAP239
and CH198. In CAP239 escape occurred in just days, even though
TW10 was considered to be a protective epitope12 where escape

CH159CH185

260E

21
5I

242N

22
3A

21
5M

182G

epitope

182G

epitope

147L

339S

32
3I31

0S
30

9S

33
2I

33
6G

Compensatory
interaction

Antagonistic
interaction

Permissive background

Antagonistic background

Escape facilitated

Escape suppressed

a b c

Figure 1 | Specific residues in the sequence background can strongly influence the time to escape. (a) In general, escape may occur more rapidly on

permissive sequence backgrounds having many compensatory interactions with potential escape mutations. Escape may also be delayed or can occur at

other sites when strong antagonistic interactions increase the fitness cost of certain escape mutations. (b,c) Strong interactions between the Gag TL9

epitope escape mutation 182 G and the transmitted/founder sequence background in patients CH185 (b) (escape time¼ 122 days) and CH159 (c) (escape

time41,103 days) differ significantly. All strong interactions (|J|40.1, see equation (1)) between 182 G and the p24 protein sequence background,

represented by the circles, are shown, with the width of the link proportional to the magnitude of the coupling. Compensatory or synergistic interactions

(J40) lower the fitness cost of mutation, thus promoting escape. Antagonistic interactions (Jo0) increase the fitness cost of mutation, discouraging

escape.

Table 1 | In cases where identical epitopes are targeted by
multiple individuals, escape occurs more rapidly when the
fitness cost of escape is lower.

Epitope Patient HLA
restriction

Fitness
cost DE

Escape time
(days)

TPQDLNTML
(TL9)

CH185 B*81:01 4.3 122
CH159 B*81:01 6.1 41,103*

TSTLQEQVAW
(TW10)

CAP239 B*58:01 � 1.4 1
CH198 B*57:03 0.1 220

WHLGHGVSI
(WI9)

CAP210 B*15:10 2.8 127
CAP45 B*15:10 4.7 408w

EEVGFPVRPQV
(EV11)

CH164 B*45:01 2.6 31
CAP45 B*45:01 4.0 43

*No escape observed (final sequencing time).
wAntigen-processing escape.
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often incurs a high fitness cost7. The Shannon entropy of
this epitope, a quantity that can correlate with time to escape29,
is also fairly low (S¼ 0.19, in the bottom 31% of epitope
entropies), making the rapid escape appear puzzling. However,
the average fitness cost for mutational escape (DE, see the
‘Methods’ section) for this epitope, which includes the effects of
the sequence background, is very low (DE¼ � 1.4, in the bottom
15% of all epitopes considered here). This is true in part because
the T/F virus in patient CAP239 contained the mutations H219Q
and I223V, compared with the consensus sequence (see ref. 29),
which are known to partially compensate for the fitness cost of
escape mutation in the TW10 epitope8. In our model these
residues had a synergistic interaction with the observed escape
mutations T242N and A248T (see Supplementary Fig. 2a,b),
contributing to the low value of DE. Thus, the model successfully
predicts rapid escape, whereas Shannon entropy measures do not.
The sequence background of patient CH198 also contained
specific amino acids that compensated for the eventual T242N
escape mutation, which arose after 220 days, but mutations at
residues like A248T were suppressed by other residues with
antagonistic interactions (Supplementary Fig. 2c,d). This resulted
in a higher estimated fitness cost of escape (DE¼ 0.1). Thus, we
predict that escape should occur more slowly in patient CH198,
and only through the T242N mutation, in agreement with the
clinical data.

The effects of epistatic interactions on escape will not always be
as marked as for the cases discussed above. But their importance
in general is indicated by the fact that, using our fitness landscape
model alone, which considers the entire protein, the average

fitness cost we estimate is more strongly correlated with the
observed escape time for each epitope (Pearson’s r¼ 0.39, P¼ 1
� 10� 3, n¼ 65, see Fig. 2b) than the average Shannon entropy
(S) of residues in the reactive 8–12-amino-acid (aa) epitope
(Pearson’s r¼ � 0.15, P¼ 2� 10� 1, Fig. 2a, studied in connec-
tion with escape in ref. 29). However, fitness cost alone cannot
predict the time to escape because such a static measure does not
account for the stochastic dynamics of virus evolution and
multiple escape pathways that may become available, nor does it
incorporate the effects of sequence heterogeneity in the evolving
swarm of viruses. Indeed, we observe that the number of residues
in each epitope with low-energy (Eo2) mutations available is also
significantly correlated with time to escape (Pearson’s r¼ � 0.32,
P¼ 6� 10� 3), hinting at the potential importance of multiple
escape paths (see Supplementary Fig. 3 for further details). In
addition, the static approach does not accommodate the strength
of the T-cell response to each epitope.

Predicting relative escape times through evolutionary dynamics.
We simulated the evolution of the virus population in response to
CD8þ T-cell-mediated immune pressure on specific epitopes
using a Wright–Fisher-like model from population genetics. The
model describes evolution through discrete rounds of replication,
mutation and selection (see the ‘Methods’ section). Mapping from
energy values to differences in fitness was estimated using
measurements of HIV replication in vitro obtained from a
separate study13 (see Supplementary Fig. 4). We used the sample
of viral sequences obtained at the time the T-cell response was
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Figure 2 | Measured escape times are strongly correlated with the simulated escape time. Compared with the epitope entropy (a) and the average

fitness cost of escape mutations (b), the time to escape in evolutionary simulation (c) shows more robust correlation with the escape time inferred from

clinical data. When escape occurred through AgP mutations affecting presentation of the epitope (open circles), the time at which AgP mutants dominate

the population is substituted as a lower bound for the escape time (n¼ 3 cases). Similarly, the final time at which sequence samples were collected

was substituted as a lower bound on the escape time when no escape was observed (n¼ 10). (d) Information about immunodominance can be

incorporated into evolutionary simulations, improving the predicted escape times for epitopes where this information is available (n¼49). In all cases,

epitopes where escape was observed at the time when T-cell response was detected are excluded (n¼6 total, out of which 4 have immunodominance

measurements). Epitopes studied include those derived from all HIV proteins except Vpu (because no patients targeted epitopes in Vpu early in infection)

and gp120.
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first detected as the starting population for the simulation. This
allows us to consider the effects of diverse viral sequence
backgrounds on escape. To capture the effects of the ongoing
killing of infected cells by T cells specific for the targeted epitope,
all sequences without non-synonymous mutations in the epitope
had their fitness reduced by a fixed amount, chosen large enough
so that escape conferred a selective advantage (for details, see the
‘Methods’ section).

For each epitope studied, we carried out many simulations and
computed the mean number of discrete evolutionary generations
(tWF) that elapsed before escape mutants comprised 450% of the
total virus population. The values of tWF can be interpreted as
relative rates for the evolution of escape mutants for each epitope.
The values of tWF are strongly correlated with the true escape
times observed in the patients (Pearson’s r¼ 0.66, P¼ 2� 10� 9,
Fig. 2c), vastly improving predictions based on Shannon entropy
or static fitness cost estimates alone. In these calculations we
excluded 6 epitopes where the fraction of escape mutants in the
virus population at the time point when the T-cell response was
initially detected was Z50%. If these data points are included, the
correlation between tWF and the true escape time becomes even
stronger (Pearson’s r¼ 0.81, P¼ 2� 10� 17, Supplementary
Fig. 5, including error bars on true and simulated escape times).
This is because we predict that escape occurs very rapidly in these
cases (see the ‘Methods’ section and ref. 29). It is important to
note that the founder viruses in the patients where escape
mutations in the six epitopes were 450% of the quasispecies at
the first time point of observation did not contain these escape

mutations. So, we have excluded these cases from statistical
analyses by an abundance of caution only.

The characteristics of the immune response directed towards
each epitope also influence the process of escape. In particular,
stronger immune responses will result in a greater selective
advantage for the virus to evolve a mutation in a targeted
epitope to evade the immune response. The balance between this
selective advantage and the intrinsic fitness cost incurred by
making the mutation determines the location and kinetics of
evolution of escape mutations. The relative strength of the
immune response targeting epitopes (immunodominance) and
the incurred intrinsic fitness costs are independent effects. The
larger the intrinsic fitness costs incurred by making a mutation,
the greater must be the strength of the immune response directed
towards the corresponding epitope in order for the virus to evolve
an escape mutation at that residue. Immunodominance
information alone provides no knowledge about which regions
of the virus should be targeted by vaccine-induced immune
responses to minimize the rate of escape due to large fitness costs.
Given the same strength of the immune response directed
towards two epitopes, escape will be faster in the epitope
for which the fitness cost of evolving a mutation
(given the sequence background) is lower. The intrinsic fitness
cost can be estimated more accurately using our methods
compared with past efforts using entropy.

In this clinical data set, vertical immunodominance, the
fraction of the total measured HIV-1-specific T-cell response
directed towards a specific epitope (%M), was determined for 53

Table 2 | Cox proportional hazards models quantify contributions to escape rate.

Predictors Coefficient P value Pseudo-R2

Univariate models (n¼ 53 epitopes, maximum possible pseudo-R2¼ 0.99)
log10(S) 0.87 0.08 0.06
DE �0.14 0.02 0.10
tWF �0.14 5.8� 10� 8 0.51

tWF
%M �0.17 1.5� 10� 9 0.63

log10(%M) 1.53 7.8� 10� 5 0.29

Multivariate models (n¼ 53, maximum possible pseudo-R2¼0.99)
log10(S)þ
log10(%M)

1.11
1.60

0.07
9.3� 10� 5

0.33

DEþ
log10(%M)

�0.17
1.66

4.4� 10� 3

3.6� 10� 5
0.39

tWFþ
log10(%M)

�0.14
1.55

1.3� 10� 7

1.7� 10�4
0.64

tWF
%Mþ

log10(%M)
�0.16

0.13
1.7� 10� 7

0.76
0.64

Univariate models, excluding escapes at the time the T-cell response was first detected (n¼49, maximum possible pseudo-R2¼ 0.99)
log10(S) 0.81 0.11 0.05
DE �0.14 0.02 0.10
tWF �0.12 8.9� 10� 6 0.37

tWF
%M �0.15 1.1� 10� 7 0.53

log10(%M) 1.68 5.1� 10� 5 0.33

Multivariate models, excluding escapes at the time the T-cell response was first detected (n¼49, maximum possible pseudo-R2¼ 0.99)
log10(S)þ
log10(%M)

1.06
1.77

0.10
6.2� 10� 5

0.37

DEþ
log10(%M)

�0.18
1.83

5.0� 10� 3

2.3� 10� 5
0.42

tWFþ
log10(%M)

�0.12
1.65

2.0� 10� 5

1.1� 10�4
0.56

tWF
%Mþ

log10(%M)
�0.14

0.37
4.8� 10� 5

0.43
0.54

Contributions of vertical immunodominance (%M) and purely fitness-related measures (S, DE and tWF) are mostly independent.
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epitopes29. To obtain the best predictions of escape, this
information about the strength of T-cell responses should
be combined with estimates of viral fitness. Immunodominance
can naturally be incorporated into our Wright–Fisher simulations
by increasing the fitness penalty for viruses without
escape mutations in proportion with the strength of the
immune response directed towards each epitope (tWF

%M).
This further improves our ability to predict escape times for
cases where immunodominance information is known
(Pearson’s r¼ 0.72, P¼ 5� 10� 9, Fig. 2d; see Supplementary
Table 2 for comparisons in rank correlations). Note that it
was previously found that immunodominance by itself correlated
with time to escape (Pearson’s r¼ � 0.41, P¼ 2� 10� 3, for the
subset of n¼ 53 epitopes for which immunodominance
information is available29). By combining the two forces at play
in the evolution of escape mutations—fitness costs and strength
of immune responses—the ability to predict time to escape
improves significantly.

Next we further quantified the relative statistical power
of each predictor of escape time. To obtain a more sensitive
measure of contributions to the escape time we used a
Cox proportional hazards (CPH) model, which properly accounts
for whether or not escape was observed for each epitope during
the time of observation (Table 2). Here, we found
that the predictive power of the time to escape in
Wright–Fisher simulations without including immunodominance
information (tWF; pseudo-R2¼ 0.37, P¼ 9� 10� 6, n¼ 49)
markedly improves upon both the static fitness cost
(DE; pseudo-R2¼ 0.10, P¼ 0.02) and epitope entropy
(S; pseudo-R2¼ 0.05, P¼ 0.11), even when rapidly escaping
epitopes are excluded. Overall, tWF displays similar predictive
power to %M (pseudo-R2¼ 0.33, P¼ 5� 10� 5), suggesting that
both viral and host factors strongly influence the rate of escape.
Encouragingly, we found that simulations combining our inferred
fitness landscape with knowledge of immunodominance patterns
(tWF

%M; pseudo-R2¼ 0.53, P¼ 1� 10� 7) capture much of the
predictive power of both variables summed individually (pseudo-
R2¼ 0.56). This result is consistent with our argument above that
the intrinsic fitness cost of escape mutations and the
corresponding selective advantage due to immune evasion are
independent effects whose balance determines the kinetics of

escape. These results also hold in patient-stratified CPH
models, which incorporate patient-specific baseline escape rates
(Supplementary Table 3). Overall we found a consistent hierarchy
in which the Wright–Fisher simulations including immunodo-
minance have by far the greatest predictive power, followed by
tWF and %M separately, then by static fitness costs and finally by
the epitope entropy S.

Dynamical predictions of the residues where escape occurs.
Following the hypothesis that escape mutations should
preferentially appear at residues where the fitness cost of muta-
tion is minimized, the same methods described above can also be
used to predict the residues where escape mutations are most
likely to emerge. For each targeted epitope, we ordered each
residue in the epitope according to how often an escape mutation
was observed at that residue in simulations of evolutionary
dynamics (from high to low). We then counted the frequency of
escape mutations observed at each residue in the clinical data at
the time that escape mutants first comprised Z50% of the virus
population. Figure 3 shows that in the great majority of epitopes
(86%) the most common residue where escape mutations arose in
patients is one of the top two predicted residues. For reference,
these results are compared with predictions based on epitope
entropy, where it is assumed that escape mutations are more
likely to occur at residues with higher entropy (67% of escapes
occur at sites within the top two highest entropies). Similar results
are also obtained for the prediction of the most common residue
at which escape mutations are observed through the entire time
course of in-host virus evolution (Supplementary Fig. 6, see
Supplementary Fig. 7 for further detailed results).

Discussion
Our results show that the relative time to escape from
HIV-specific CD8þ T-cell responses, as well as the location of
emerging escape mutations, is predictable in silico, given knowl-
edge of the epitopes targeted by CD8þ T cells and the infecting
virus’s sequence. Collectively, our results emphasize the impor-
tance of viral factors in the kinetics and location of escape from
T-cell-mediated immune control in early HIV infection when
virus set point is being established, and reveal predictable
constraints on HIV evolution.

Recent work has also highlighted the role of viral fitness in HIV
transmission, observing a significant bias towards the transmis-
sion of fitter viruses over less fit variants34. Thus, it is especially
important to identify epitopes, or combinations of epitopes,
where escape exacts a high fitness cost in diverse sequence
backgrounds, because targeting of these epitopes through
vaccination could not only lead to control of viral loads to low
levels but potentially also to reduced replicative fitness of patient
virus populations. This effect could result in further reduction in
transmission even beyond the benefits of controlling infection in
individual patients34. Identification of combinations of epitopes
where simultaneous mutations are deleterious requires knowledge
of the large antagonistic epistatic interactions. This is especially
true given that, for many epitopes, it appears that multiple
potential escape pathways with similar fitness costs exist (see
Supplementary Fig. 3). Moreover, the ability to make accurate
predictions of escape pathways should have implications for
defining optimal targeting of immune responses capable of
controlling virus activated from the virus reservoir35, with
implications for immunotherapeutic interventions to effect a
functional cure.

We note that the evolutionary dynamics considered here
incorporate several simplifying assumptions. First, we treat the
effective population size as constant, a reasonable assumption in
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Figure 3 | Simulation of evolution with the fitness landscape enhances

prediction of the residues at which escape mutations occur. In the great

majority of epitopes (n¼ 51), the most commonly observed location of

escape mutations in the clinical data at the time that escape mutants first

comprise 450% of the virus population corresponds to one of the two top

residues where mutations are most frequently observed in simulated

evolution (44/51¼86%). For comparison, the residue where escape

mutations are observed most often has one of the top two highest Shannon

entropies in 34/51¼ 67% of cases. Epitopes where escape was observed at

the time the T-cell response was detected are excluded (n¼ 6), as is one

epitope without detailed escape sequence data.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11660

6 NATURE COMMUNICATIONS | 7:11660 | DOI: 10.1038/ncomms11660 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


the chronic phase when viral load is fairly stable. Variable
population sizes may lead to a better description of escape in the
acute phase, when viral load is dynamic, but the appropriate
relationship between viral load and model-specific effective
population size is unclear. Second, we have conservatively
assumed that any non-synonymous mutation within a targeted
epitope confers escape. It is not certain that all mutations impair
T-cell recognition (the published data are somewhat conflict-
ing36–39), but the majority probably do. As it is impossible to
know in general which mutations would lead to abrogation of
recognition, the only well-controlled approximation that we are
aware of is the one we have used. Detailed knowledge of how
individual mutations affect epitope-HLA binding and CD8þ

T-cell recognition would help to improve the results we have
shown here by identifying the specific mutations that effectively
confer escape. Such differing effects of mutations within reactive
epitopes is another reason that considering multiple escape
pathways is important: the existence of several escape pathways
with low intrinsic fitness costs could allow the virus to select for
escape mutants with higher effective fitness through decreased
recognition by the host immune system. More realistic
simulations should also include a time-varying fitness penalty
for viruses without escape mutations, to take into account the
dynamic growth and contraction of epitope-specific CTL
(cytotoxic T lymphocyte) clones. Despite these simplifications,
our results show good agreement, and significant enhancement
over Shannon entropy alone, with relative rates of escape in vivo
as well as the identity of residues where escape mutations arise.
Future refinements are expected to further improve the ability to
predict HIV evolution in patients.

Here we carried out Wright–Fisher simulations with and
without recombination at the level of single proteins, finding
comparable results in each case. This may be because the donors
in this cohort were all infected by a single T/F virus, and so escape
by recombination without new mutations would not be possible
(in cases of multiple infection such escapes can occur40).
Recombination may be an important feature, however, in
extended models including whole-genome evolution, or in cases
of multiple infection.

Recent work has also shown the potential importance of clonal
interference in the kinetics of escape11. Our simulations include
the possibility of clonal interference between competing escape
variants for the same epitope, but they do not currently take into
account competition between sequences with escape mutations in
different epitopes. Clonal interference should lead to greater
uncertainty in escape times as stochastic effects become more
important; however, it should not affect the typical ordering of
escape mutations. This is because the same escape mutations can
arise on any sequence background, and barring intergenic
epistatic effects (which have been estimated to be low in
previous studies9), on average, escape should occur more
rapidly at epitopes where the fitness cost of mutation is
minimal. However, the incorporation of clonal interference
effects may be important in future more detailed models of
viral evolution to most accurately capture times to escape and
their statistical uncertainties.

While we have focused on T cells, the methods we have
detailed here are not limited to this case alone. Similar approaches
could be used to determine whether certain combinations of
broadly neutralizing antibody responses are most likely to target
nonlinear epitopes to effectively control viral loads to low levels
for long times, for example.

Methods
Patient cohort. The cohort comprised 17 subjects (10 male and 7 female) iden-
tified in acute HIV-1 infection (Fiebig stages I–IV) recruited under the CHAVI 001

and CAPRISA studies at sites in the United States, Malawi and South Africa29. US
subjects were infected with clade B viruses, whereas all African subjects were
infected with clade C viruses. Candidate epitopes in reactive 18 mers that
previously could not be reliably identified were selected according to the criteria in
Supplementary Table 4 (details are given in the subsection ‘Epitope identification’).

Sequence data for the Potts model. We downloaded multiple sequence align-
ments (MSA) of HIV-1 clade B and clade C protein sequences from the Los
Alamos National Laboratory HIV sequence database (www.hiv.lanl.gov; accessed
6th October 2014). The MSA were then processed to remove insertions relative to
the HXB2 reference sequence (GenBank accession code K03455). To improve
sequence quality, sequences labelled as ‘problematic’ in the sequence database were
not downloaded, and sequences with gaps or ambiguous amino acids present at
45% of residues were removed from the MSA. The remaining ambiguous amino
acids were imputed with simple mean imputation. For details on the number of
sequences obtained for each protein/clade, see Supplementary Table 1.

Each sequence in the MSA can be represented as a vector of variables z¼ {z1, z2, y,
zN}, ziA{A, R, y, V, � }, where N is the length of the protein sequence. Each of the zi

represents the amino acid (or gap) present at residue i in the sequence. We refer to
possible values of the zi as states. Our goal will be to infer a model that accurately
describes the distribution of HIV sequences circulating in the population, of which the
sequences in the MSA are a sample. To describe this distribution we focus on the lowest
moments: the frequency of each state at each residue, and the frequency of each pair of
states at each pair of residues. These are given by

p�i ðaÞ ¼
1

W

XB

k¼1

wkdðzðkÞi ; aÞ; p�ijða; bÞ ¼ 1
W

XB

k¼1

wkdðzðkÞi ; aÞdðzðkÞj ; bÞ: ð2Þ

Here k is an index running from 1 to B used to label each sequence in the MSA,
and B is the total number of sequences in the MSA. The function d is the
Kronecker d function,

dða; bÞ ¼ 0 if a 6¼ b
1 if a ¼ b

�
: ð3Þ

To prevent multiple sequences obtained from the same individual from biasing
the sequence distribution, we weight the contribution of each sequence labelled k in
the MSA by a factor wk. We set wk equal to one divided by the total number of
sequences in the MSA obtained from the same individual from whom the sequence
labelled k was extracted. In this way, the total weight of the sequences from each
individual is equal. The normalizing factor W in equation (2) is the number of
unique individuals from whom the sequences in the MSA were obtained, given
equivalently by W¼

P
kwk. Following standard terminology in statistical physics,

we refer to the pi*(a) and pij*(a,b) given in equation (2) as correlations.

Maximum entropy inference. There are, in principle, a vast family of probabilistic
models that could reproduce the correlations observed in equation (2). The ‘least
biased’ model capable of reproducing the observed correlations, defined as the
model that maximizes the entropy of the sequence distribution, is the Potts model,
in which the probability of observing a particular sequence z is

PðzÞ ¼ exp � EðzÞð Þ
Q

; EðzÞ ¼ �
XN

i¼1

hiðziÞ�
XN � 1

i¼1

XN

j¼iþ 1

Jijðzi; zjÞ: ð4Þ

Here E(z) is referred to as the energy of the sequence z, and

Q ¼
X

z

exp � EðzÞð Þ ð5Þ

is a normalizing factor ensuring that the probabilities of all sequences sum to one.
The sum in equation (5) is over all sequences of length N.

The parameters hi(a), Jij(a,b) in equation (4) are to be chosen such that the Potts
model correlations

piðaÞ ¼
X

z

dðzi; aÞ
exp � EðzÞð Þ

Q
;

pijða; bÞ ¼
X

z

dðzi; aÞdðzj; bÞ exp � EðzÞð Þ
Q

;

ð6Þ

are equal to their counterparts estimated from the MSA, given in equation (2).
The problem of determining the hi(a), Jij(a,b) parameters from the measured
correlations is referred to as the inverse Potts problem. Its solution is given by
the parameters that maximize the log-likelihood function

‘ ¼ � log Qþ
XN

i¼1

X
a

hiðaÞp�i ðaÞþ
XN � 1

i¼1

XN

j¼iþ 1

X
a;b

Jijða; bÞp�ijða; bÞ: ð7Þ

However, no analytical solution exists for systems of nontrivial size, and the
likelihood cannot be directly maximized numerically due to the presence of Q,
which requires summing over a number of terms that grows exponentially with the
length of the protein N.

To obtain a fast and accurate solution to the inverse Potts problem, we applied
an extension of the selective cluster expansion method, described in ref. 27, with
computational details in ref. 28. This method was originally developed to solve the
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inverse Ising problem, a special case of the inverse Potts problem where the
number of states at each residue is limited to two. Generalizing the approach to
models with an arbitrary number of states at each residue, the algorithm requires
maximizing the L2-regularized likelihood,

‘ðgÞ ¼ � log Qþ
X
i2G

X
a

hiðaÞp�i ðaÞþ
X
fi;jg2G

X
a;b

Jijða; bÞp�ijða; bÞ �
g
2

X
fi;jg2G

X
a;b

Jijða; bÞ2; ð8Þ

restricted to small subsets G of the full system, where numerical approaches are
feasible. For example, for a two-site subset G¼ {1,2} we would compute the set of
fields h1(a), h2(a) and couplings J12(a,b) that maximize the likelihood of the model
restricted to just the sites 1 and 2, constrained to reproduce the correlations for
those sites p1*(a), p2*(a) and p12*(a,b); sites {3, 4, y, N} outside of G are ignored in
this calculation.

Using the parameters inferred for many different subsets G, an approximate
solution of the hi(a), Jij(a,b) for the full system can be constructed27,28. We follow
the procedure described in refs 28 and 13 to infer parameters hi(a), Jij(a,b) for the
Potts model, which accurately recover the measured correlations, without
overfitting the model (see also Supplementary Fig. 1). Selection of the optimal
regularization strength g was determined by comparing the fit with higher-order
statistics of the sequence distribution for models inferred over a range of different
g, as detailed in ref. 13. Following a Bayesian interpretation of the L2-norm
regularization term as a Gaussian prior distribution, we naturally expect g to scale
as 1/W, where W is the number of unique patients from which sequence data from
the LANL database were obtained. To ensure that the regularization strength is
similar across proteins with comparable sequencing depth, we tested values of the
regularization strength ranging from 1/(2 W) to 2/W. Rather than using the full set
of 21 states (20 aa and 1 gap state) at each residue, we used a compressed
representation of the states at each residue, as described below.

Sequence compression. Even with the use of sophisticated algorithms, solving the
inverse Potts problem remains a challenging computational task. This task is
complicated by the large number of parameters in the model, equal to N(q-1)
(N(q-1)þ 1)/2, where N is the length of the protein sequence and q is the number
of states, assuming that this number is the same for each residue. Choosing q¼ 21
for the 20 possible amino acids plus 1 gap state, we would require more than two
million variables to parameterize the Potts model for a protein of length 100, a
typical length scale for HIV proteins.

Fortunately, it is not necessary to include all possible amino acids at each
residue in the model explicitly to obtain a useful characterization of the sequence
distribution. We adaptively adjusted the number of states allowed at each residue
based on the frequencies with which different amino acids are observed there in the
MSA. Our procedure for choosing the number of states qi at each residue i is as
follows. First, we order the amino acids at residue i according to how frequently
they are observed in the MSA, such that

p�i ða1Þ � p�i ða2Þ � . . . � p�i ða21Þ � 0: ð9Þ
The Shannon entropy of the distribution of amino acids at this residue can be

written as

S ¼ �
X21� 1

j¼1

p�i ðajÞ log p�i ðajÞ� ð1�
X21� 1

j¼1

p�i ðajÞÞ logð1�
X21� 1

j¼1

p�i ðajÞÞ; ð10Þ

as the pi*(a) must sum to one when summed over all states a. Then, we set qi equal
to the smallest integer q, such that

Sq ¼ �
Xq� 1

j¼1

p�i ðajÞ log p�i ðajÞ� ð1�
Xq� 1

j¼1

p�i ðajÞÞ logð1�
Xq� 1

j¼1

p�i ðajÞÞ

� 0:9�S: ð11Þ
That is, we choose a number of states qi such that the reduced representation

captures at least 90% of the full entropy of the distribution of amino acids at that
residue. The qi-1 most frequently observed amino acids at that residue each map to
particular Potts states. All the remaining, infrequently observed amino acids map
to a single aggregate state.

Our choice of the number of states to model at each residue is adaptive,
compressing the amino acid alphabet heavily at residues where little variation is
observed, but allowing for a larger number of states when many different amino
acids are present at nontrivial frequencies. The particular choice of cutoff given in
equation (11) leads to the consideration of multiple states even in conserved
proteins such as Gag, while still limiting the number of states sufficiently that the
inverse Potts problem remains computationally tractable for the more highly
variable proteins studied here, such as Nef and gp41. Successful prediction of
higher-order statistics of the sequence distributions suggests that the predictive
power of the model is not compromised by our convention for sequence
compression (Supplementary Fig. 1).

Epitope identification. In our study, we included all epitopes identified in ref. 29
that were targeted within 50 days post estimated Fiebig stage I/II, with the
exception of epitopes lying in the gp120 subunit of Env, for which we did not
obtain a Potts model. This was due to the combination of length and high

variability for gp120, which makes the inverse Potts inference problem more
difficult. In addition, two Nef epitopes (DEPAAVGVG targeted by CH77 and
RIRKTAPTA targeted by CH162) were excluded as a part of these epitopes lie in
regions that are insertions relative to the HXB2 reference sequence, and thus not
covered by our model. As in ref. 29 we also excluded one epitope where no escape
was observed during the course of the study, but sequence data did not extend to at
least 200 days from the subject’s initial screening visit.

Attempts to identify the optimal epitopes were made in ref. 29, beginning with
ex vivo IFN-g ELISPOT assays using overlapping 18 mers matched to the
transmitted/founder strain. In 7/71 cases optimal 8–11 mers could not be
identified, and hence we used the LANL ELF tool (http://www.hiv.lanl.gov/content/
sequence/ELF/epitope_analyzer.html) to search for known HLA-matched epitopes
from the LANL CTL database. If no matches were found in the database, we used
NetMHC version 3.4 to identify likely epitopes within the reactive 18 mer (ref. 41).
We analysed all epitopes that had strong predicted binding affinities
(IC50r500 nM). Where possible we used empirically determined HLA-specific
cutoffs42 rather than the standard threshold of 500 nM. We then averaged the S, DE
and tWF values across these likely epitopes and used these averages for escape time
prediction. The selected epitopes are summarized in Supplementary Table 4. Note
that this method for evaluating epitopes that could not be directly identified differs
from that used in ref. 29.

In total, the distribution of the 71 epitopes we considered among HIV proteins
is as follows. We analysed 24 epitopes from Gag: 4 epitopes from p17, 16 from p24,
3 from p7 and 1 from p6. From Pol, we analysed 5 epitopes: 1 from protease, 3
from reverse transcriptase and 1 from integrase. Our study includes 7 epitopes
from the regulatory proteins: 3 from Tat and 4 from Rev. We analysed 12 epitopes
from the gp41 subunit protein of Env and 23 epitopes from the accessory proteins:
4 from Vif, 1 from Vpr and 18 from Nef. See Supplementary Data 1 for a list of
epitopes and their properties.

Estimation of escape times from clinical data. Limited numbers of sample
sequences and long delays between sampling times make reliable inference of escape
times difficult. To combat this issue, we used a mathematical method developed to
infer the kinetics of viral escape from T-cell pressure33 to provide a robust estimation
of time to escape. Briefly, the growth in the fraction of escape mutants in the virus
population over time can be approximated by a logistic equation

f ðtÞ ¼ f0

f0 þð1� f0Þe� Et : ð12Þ

Here, f(t) is the fraction of escape mutants in the population over time, f0 is the
initial fraction of escape mutants, and e is a parameter that expresses the rate of
growth of the escape mutants relative to the rest of the virus population. The
parameters f0 and e appearing in equation (12) can be estimated from time series
sequence data: given a collection of sequences n¼ {n1, n2, y, nT} collected at times
t¼ {t1, t2, y, tT}, the likelihood of observing a number of escape mutants k¼ {k1,
k2, y, kT} assuming that the true fraction of escape mutants in the population
obeys equation (12) is33

L ¼
Y

i

ni

ki

� �
f ðtiÞki 1� f ðtiÞð Þni � ki : ð13Þ

For each epitope we thus obtained maximum likelihood estimates of f0 and e,
and then used these parameters in equation (12) to solve for the time at which the
fraction of escape mutants in the population was equal to 50%,

tML ¼ log
1� f0

f0

� �
=E; ð14Þ

which we refer to as the maximum likelihood escape time. The threshold of 50%
escape mutants in the population was chosen to reflect previously used definitions
of escape time29. If no sequences were available at the precise time that the T-cell
response was first detected, we used the most recently collected sequences for the
first time point. We included a lower bound of 1 day on escape times, so that
escapes inferred to occur in r1 day were rounded up to one. The overall
correlation between the maximum likelihood escape time and those computed in
previous work29 is strong (Pearson’s r¼ 0.92, P¼ 3.8� 10� 30, n¼ 71), but the
maximum likelihood approach tends to yield shorter escape times in cases where
escape is rapid. This method was used to estimate the escape time for both
conventional escapes (through mutations within an epitope) and escapes occurring
through putative antigen-processing mutations.

Prediction of fitness costs of escape mutations. The difference in energy
between sequences can be used to quantify their expected difference in fitness. This
assertion is supported by in vitro tests of viral replicative capacity for multiple
closely related HIV strains, which found a strong correlation between differences in
energy and replicative capacity10,13. We can thus compute the energy difference
between a sequence and potential escape mutants to quantify the expected fitness
barrier to mutational escape in a targeted epitope.

For each targeted epitope, we began with the transmitted/founder (T/F)
sequence z for the viral protein in which that epitope is located. In case the T/F
sequence was not available, we used the most common sequence in the virus
population at the earliest time point when sequencing data were available. We then
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generate the set of all sequences {z0} that differ from z by a single non-synonymous
mutation in the targeted T-cell epitope, and compute the average difference in
energy between this set of sequences and z:

DE ¼
X

z0
Eðz0Þ � EðzÞð Þ e� Eðz0 Þ

Qz
; Qz ¼

X
z0

e� Eðz0 Þ: ð15Þ

This Boltzmann-like average emphasizes the contribution of the escape
mutation with the lowest fitness cost. Focusing only on sequences {z0} that differ by
a single nucleotide mutation from z allows us to estimate the fitness cost of the
shortest mutational path to escape. More involved escape trajectories are effectively
taken into account when we simulate the evolution of the virus population, as
described below.

Evolutionary simulations. To simulate the evolution of virus populations in vivo,
we coupled the inferred Potts model to a Wright–Fisher-like evolutionary model.
We assume a fixed population size of N¼ 104 viruses in the population, in line with
estimates of the effective population size of HIV for intra-host evolution43. In each
run of the simulation, the fraction of each sequence in the starting virus population
is taken to be the same as in the set of viral sequences collected at the time point
that the T-cell response was first detected. If there were no sequence data available
from the same time that the T-cell response was detected, we used the most
recently collected sequences before that time to set the fraction of each sequence in
the virus population.

The starting population of sequences then evolves in discrete time steps, with
rounds of selection, replication and mutation. In the selection step, each sequence z
survives with probability

PðsurviveÞ ¼ eb �E� EðzÞð Þ

1þ eb �E�EðzÞð Þ ;
�E ¼

X
z

EðzÞ: ð16Þ

This form of the survival probability smoothly interpolates between P¼ 0, for
sequences that are much less fit (that is, much higher energy) than the rest of the
population, and P¼ 1, for sequences that are much fitter than the population
average. Using experimental measurements of viral replicative capacities and
sequence energies for a set of Gag mutants13, independent from the current study,
we estimated bE0.07 (Supplementary Fig. 4). Choosing other values of br0.1 also
leads to similar results. After each selection step, the population size is restored to
N by random resampling with replacement from the survivors. Following the
replication step, each sequence mutates with rate m¼ 3� 10� 5 per base, in line
with known HIV mutation rates44. Sequences can then recombine with rate
r¼ 1� 10� 5 per base, following recent estimates of HIV recombination rates45,46.
To account for the effect on viral replication of the killing of infected cells by T cells
specific for the targeted epitope, sequences without non-synonymous mutations in
the targeted epitope had their energies increased (that is, fitness decreased) by
b¼ 10, a value chosen to be larger than the largest DE (average cost of escape) so
that escape confers a selective advantage for all epitopes. To quantify the ease of
escape at each epitope we computed the number of generations to escape (Z50%
of escape mutants in the population), averaged over 103 simulations. The predicted
order of escape is not sensitive to the precise values of b and b, provided that the
latter is larger than the largest DE. Choosing b¼ 9 or b¼ 11, for example, leads to
virtually identical values for the correlation between the escape generation tWF and
the escape time for all epitopes (Pearson’s r¼ 0.79 for b¼ 9, and r¼ 0.81 for
b¼ 11, n¼ 71), but larger values of b lead to shorter average escape times otWF4
across all epitopes (otWF4¼ 32.5, 28.8 and 26.0 for b¼ 9, 10 and 11,
respectively).

We note that, if the fitness penalty b applied to viruses lacking escape mutations
is small enough so that all mutations within the targeted epitope are deleterious
even including the fitness benefit of escape, then clearly escape would be observed
only after extremely long periods of time. Indeed, we expect that in some real cases
the fitness cost of escape mutations in an epitope can be high enough that no
selective advantage is gained through escape, and thus escape mutants never come
to dominate the population. In the present work, our goal is to predict the relative
ease of generating escape mutations in each targeted epitope; thus we have chosen b
large enough that escape is preferred in all the epitopes we considered. The average
escape generations computed through the simulation described above should
therefore be interpreted as relative rates for the evolution of escape mutants for
each epitope.

As an example, escape at the Gag epitope ASRELERF37–44 targeted by patient
CH77, which has the highest DE (¼ 6.6) of all epitopes we considered, is never
observed. With b¼ 10, the mean escape generation in the Wright–Fisher
simulation is 52.9, also the largest among all epitopes. As b approaches DE the
value of tWF begins to increase sharply as escape no longer confers a large selective
advantage (tWF¼ 69.6 and 122.4 for b¼ 9 and 8, respectively). Selecting bZ9
avoids this threshold effect for epitopes with the highest DE.

Incorporating the effects of immunodominance in evolutionary simulations.
As shown above and in ref. 29, the initial vertical immunodominance (%M) of each
CD8þ T-cell response influences the rate of escape. More vigorous immune
responses increase the selective pressure for escape, and thus escape occurs more
rapidly at epitopes where the vertical immunodominance is higher. We can
incorporate this factor into the Wright–Fisher simulation by increasing the fitness

penalty b for viruses without escape mutations in proportion with the strength of
the immune response directed towards each epitope: b¼ (1�%M) bminþ%M
bmax. To avoid extremely long escape times for epitopes with the highest DE, we
took bmin¼ 9 and bmax¼ 2 bmin. We then computed the average escape time tWF

for the set of epitopes for which vertical immunodominance measurements are
available, incorporating this immunodominance-dependent b. For these epitopes,
incorporating the effects of immunodominance does not result in significant
changes in the Pearson correlation with the inferred escape times (r¼ 0.81, P¼ 3
� 10� 13 with immunodominance-dependent b versus r¼ 0.80, P¼ 1� 10� 12

without, n¼ 53; includes 4 escapes at the time the T-cell response was first
detected), but the rank correlation is substantially improved due to better ordering
of epitopes with intermediate predicted escape times (r¼ 0.73, P¼ 4� 10� 10 with
immunodominance-dependent b versus r¼ 0.53, P¼ 4� 10� 5 without). As
before, provided that bmin is large enough to avoid threshold effects for epitopes
with the largest values of DE, our results are not sensitive to the precise values of
the parameters (for example, with bmin¼ 9 we find Spearman’s r¼ 0.734, 0.739 for
bmax¼ 2 bmin� 1, 2 bminþ 1, respectively).

Effects of escape mutants in the initial population on escape predictions. For
11 epitopes, the sample of the virus population at the time that the T-cell response
towards that epitope was first detected already contains one or more escape
mutants. These cases represent instances where either testing of T-cell responses
was performed too late to detect the response before escape began, or where assays
performed at earlier times had insufficient sensitivity to detect T-cell responses
before escape occurred. This uncertainty in the exact timing of the T-cell response
is large in proportion to the estimated escape time for epitopes where escape occurs
rapidly. Because we are unable to infer the precise time that the T-cell response was
initiated (and the composition of the virus population at exactly that time), we have
used the available sequence data at the time the T-cell response was first detected as
the basis of our evolutionary simulations.

One can also consider the effects of excluding these epitopes from analysis. This
results in reduced correlation between the inferred escape time and both the escape
time in simulated evolution and the fitness cost of escape mutations (see
Supplementary Table 5). This is because the fitness cost of escape at epitopes where
escape mutants are observed at the time when the T-cell response is first detected is
lower than that for other epitopes (t¼ � 2.27, P¼ 0.035, n¼ 71, two sample
t-test). To a lesser extent, these epitopes also tend to be more immunodominantly
targeted (t¼ 1.62, P¼ 0.133, n¼ 53 epitopes with available immunodominance
information, two sample t-test). These epitopes thus represent a select sample
where the fitness cost of escape is unusually low and where rapid escape is
successfully predicted, arguing against their exclusion. Alternatively, reverting
observed escape mutations in the sequence data and the time the T-cell response
was first detected and using these reverted sequences as a starting point for
evolutionary simulations also recover rapid escape times for these epitopes, but
overall correlation is lowered in this case because of the inaccurate estimation of
the true time that the T-cell response was initiated for these epitopes (see
Supplementary Table 5).

Effects of immunodominance on escape and comparison with other predictors.
We used a CPH model to quantify the influence of fitness, epitope entropy and
relative immunodominance on rates of escape. Here we restricted our attention to
the set of n¼ 53 epitopes for which relative immunodominance data were available.
Cases where escape either was not observed (n¼ 6) or occurred through putative
antigen-processing (AgP) mutation outside the epitope (n¼ 3) were treated as
censored events. Incorporating vertical immunodominance in a multivariate model
considerably improves the model fit for epitope entropy and the fitness cost of escape
(pseudo-R2¼ 0.37 and 0.42 excluding 4 epitopes with escapes at the time the T-cell
response was first detected, Table 1), with a smaller improvement for time to escape
in simulated evolution (pseudo-R2¼ 0.56). We repeated the same analysis for
patient-stratified CPH models, which include variable escape rates for each patient.
Although the predictive power is weaker in this case, the overall results here are
similar to those described above (Supplementary Table 3).

Data availability. Summarized data on targeted epitopes are included in
Supplementary Data 1. All other data supporting the findings of this study are
available from the corresponding authors upon request.
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